Hostname: page-component-78c5997874-j824f Total loading time: 0 Render date: 2024-11-17T21:32:57.079Z Has data issue: false hasContentIssue false

Spectroscopic characterization of actinide materials

Published online by Cambridge University Press:  31 January 2011

R. Caciuffo
Affiliation:
Actinide Research Department, Institute for Transuranium Elements, Karlsruhe, Germany; roberto.caciuffo@ec.europa.eu
E. C. Buck
Affiliation:
Pacific Northwest National Laboratory, Richland, WA 99354, USA; edgar.buck@pnl.gov
D. L. Clark
Affiliation:
Los Alamos National Laboratory, NM 87545, USA; dlclark@lanl.gov
G. van der Laan
Affiliation:
Diamond Light Source, UK; gerrit.vanderlaan@stfc.ac.uk
Get access

Abstract

Advanced spectroscopic techniques provide new and unique tools for unraveling the nature of the electronic structure of actinide materials. Inelastic neutron scattering experiments, which address temporal aspects of lattice and magnetic fluctuations, probe electromagnetic multipole interactions and the coupling between electronic and vibrational degrees of freedom. Nuclear magnetic resonance clearly demonstrates different magnetic ground states at low temperature. Photoemission spectroscopy provides information on the occupied part of the electronic density of states and has been used to investigate the momentum-resolved electronic structure and the topology of the Fermi surface in a variety of actinide compounds. Furthermore, x-ray absorption and electron energy-loss spectroscopy have been used to probe the relativistic nature, occupation number, and degree of localization of 5f electrons across the actinide series. More recently, element- and edge-specific resonant and non-resonant inelastic x-ray scattering experiments have provided the opportunity of measuring elementary electronic excitations with higher resolution than traditional absorption techniques. Here, we will discuss results from these spectroscopic techniques and what they tell us of the electronic and magnetic properties of selected actinide materials.

Type
Research Article
Copyright
Copyright © Materials Research Society 2010

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1.Moore, K.T., van der Laan, G., Rev. Mod. Phys. 81, 235 (2009).Google Scholar
2.Santini, P., Carretta, S., Amoretti, G., Caciuffo, R., Magnani, N., Lander, G.H., Rev. Mod. Phys. 81, 807 (2009).CrossRefGoogle Scholar
3.Santini, P., Carretta, S., Magnani, N., Amoretti, G., Caciuffo, R., Phys. Rev. Lett. 97, 207203 (2006).Google Scholar
4.Haule, K., Kotliar, G., Nat. Phys. 5, 796 (2009).CrossRefGoogle Scholar
5.Kotegawa, H., Yogi, M., Imamura, Y., Kawasaki, Y., Zheng, G.-Q., Kitaoka, Y., Ohsaki, S., Sugawara, H., Aoki, Y., Sato, H., Phys. Rev. Lett. 90, 027001 (2003).Google Scholar
6.Cox, D.L., Zawadowski, A., Adv. Phys. 47, 599 (1998).CrossRefGoogle Scholar
7.Curro, N.J., Caldwell, T., Bauer, E.D., Morales, L.A., Graf, M.J., Bang, Y., Balatsky, A.V., Thompson, J.D., Sarrao, J.L., Nature (London) 434, 622 (2005).CrossRefGoogle Scholar
8.Flint, R., Dzero, M., Coleman, P., Nat. Phys. 4, 643 (2008).CrossRefGoogle Scholar
9.Aoki, D., Haga, Y., Matsuda, T.D., Tateiwa, N., Ikeda, S., Homma, Y., Sakai, H., Shiokawa, Y.-, Yamamoto, E., Nakamura, A., Settai, R., Onuki, Y., J. Phys. Soc. Jpn. 76, 063701 (2007).CrossRefGoogle Scholar
10.Pfleiderer, C., Rev. Mod. Phys. 81, 1551 (2009).CrossRefGoogle Scholar
11.Morss, L.R., Edelstein, N.M., Fuger, J., Eds., The Chemistry of the Actinide and Transactinide Elements, 3rd Ed. (Springer, NY, 2006).CrossRefGoogle Scholar
12.Lander, G.H., Fisher, E.S., Bader, S.D., Adv. Phys. 43, 1 (1994).CrossRefGoogle Scholar
13.O'Brien, J.L., Hamilton, A.R., Clark, R.G., Mielke, C.H., Smith, J.L., Cooley, J.C., Rickel, D.G., Starrett, R.P., Reilly, D.J., Lumpkin, N.E., Hanrahan, R.J. Jr, Hults, W.L., Phys. Rev. B 66, 064523 (2002).Google Scholar
14.Manley, M.E., Yethiraj, M., Sinn, H., Volz, H.M., Alatas, A., Lashley, J.C., Hults, W.L., Lander, G.H., Smith, J.L., Phys. Rev. Lett. 96 125501 (2006).CrossRefGoogle Scholar
15.Bouchet, J., Phys. Rev. B 77, 024113 (2008).CrossRefGoogle Scholar
16.Chantis, A.N., Albers, R.C., Jones, M.D., van Schilfgaarde, M., Kotani, T., Phys. Rev. B 78, 081101(R) (2008).CrossRefGoogle Scholar
17.Iwan, M., Koch, E.E., Himpsel, F.-J., Phys. Rev. B 24, 613 (1981).CrossRefGoogle Scholar
18.Opeil, C.P., Schulze, R.K., Volz, H.M., Lashley, J.C., Manley, M.E., Hults, W.L., Hanrahan, R.J. Jr, Smith, J.L., Mihaila, B., Blagoev, K.B., Albers, R.C., Little-wood, P.B., Phys. Rev. B 75, 045120 (2007).CrossRefGoogle Scholar
19.Kotani, T., van Schilfgaarde, M., Faleev, S.V., Phys. Rev. B 76, 165106 (2007).Google Scholar
20.Lashley, J.C., Lawson, A., McQueeney, R.J., Lander, G.H., Phys. Rev. B 72, 054416 (2005);CrossRefGoogle Scholar
van der Laan, G., Moore, K.T., Magnetic Structure of Actinide Metals (Springer Proceedings in Physics, Springer Verlag, Berlin, Heidelberg, 2010), vol. 133, p. 313.Google Scholar
21.Kotliar, G., Savrasov, S.Y., Haule, K., Oudovenko, V.S., Parcollet, O., Marianetti, C.A., Rev. Mod. Phys. 78, 865 (2006).CrossRefGoogle Scholar
22.Dai, X., Savrasov, S.Y., Kotliar, G., Migliori, A., Ledbetter, H., Abrahams, E., Science 300, 953 (2003).CrossRefGoogle Scholar
23.Wong, J., Krisch, M., Farber, D.L., Occelli, F., Schwartz, A.J., Chiang, T.-C., Wall, M., Boro, C., Xu, R., Science 301, 1078 (2003).CrossRefGoogle Scholar
24.Gouder, T., Eloirdi, R., Rebizant, J., Boulet, P., Huber, F., Phys. Rev. B 71, 165101 (2005).CrossRefGoogle Scholar
25.Terry, J., Schulze, R.K., Farr, J.D., Zocco, T., Heinzelman, K., Rotenberg, E., Shuh, D.K., van der Laan, G., Arena, D.A., Tobin, J.G., Surf. Sci. 499, L141 (2002).CrossRefGoogle Scholar
26.Gouder, T., Havela, L., Wastin, F., Rebizant, J., Europhys. Lett. 55, 705 (2001).CrossRefGoogle Scholar
27.Havela, L., Gouder, T., Wastin, F., Rebizant, J., Phys. Rev. B 65, 235118 (2002).Google Scholar
28.Shick, A.B., Kolorenc, J., Havela, L., Drchal, V., Gouder, T., Europhys. Lett. 77, 17003 (2007).Google Scholar
29.Shim, J.H., Haule, K., Kotliar, G., Nature (London) 446, 513 (2007).CrossRefGoogle Scholar
30.McCall, S.K., Fluss, M.J., Chung, B.W., McElfresh, M.W., Jackson, D.D., Chapline, G.F., Proc. Natl. Acad. Sci. U.S.A. 103, 17179 (2006).CrossRefGoogle Scholar
31.Thole, B.T., van der Laan, G., Phys. Rev. B 38, 3158 (1988); Phys. Rev. A 38, 1943 (1988).CrossRefGoogle Scholar
32.van der Laan, G., Moore, K.T., Tobin, J.G., Chung, B.W., Wall, M.A., Schwartz, A.J., Phys. Rev. Lett. 93, 097401 (2004).CrossRefGoogle Scholar
33.van der Laan, G., Thole, B.T., Phys. Rev. B 53, 14458 (1996).Google Scholar
34.Moore, K.T., van der Laan, G., Haire, R.G., Wall, M.A., Schwartz, A.J., Söderlind, P., Phys. Rev. Lett. 98, 236402 (2007).CrossRefGoogle Scholar
35.Butterfield, M., Moore, K.T., van der Laan, G., Wall, M.A., Haire, R.G., Phys. Rev. B 77, 113109 (2008).Google Scholar
36.Colella, M., Lumpkin, G.R., Buck, E.C., Zhang, Z., Smith, K.L.Phys. Chem. Miner. 32, 52 (2005).Google Scholar
37.Buck, E.C., Douglas, M., Wittman, R.S., Micron 41, 65 (2010).CrossRefGoogle Scholar
38.Caciuffo, R., van der Laan, G., Simonelli, L., Vitova, T., Mazzoli, C., Denecke, M.A., Lander, G.H., Phys. Rev B 81, 195104 (2010).Google Scholar
39.Bradley, J.A., Sen Gupta, S., Seidler, G.T., Moore, K.T., Haverkort, M.W., Sawatzky, G.A., Conradson, S.D., Clark, D.L., Kozimor, S.A., Boland, K.S., Phys. Rev B 81, 193104 (2010).Google Scholar
40.Schoenes, J., Phys. Rep. 63, 301 (1980).Google Scholar
41.Magnani, N., Santini, P., Amoretti, G., Caciuffo, R., Phys. Rev. B 71, 054405 (2005).CrossRefGoogle Scholar
42.Roy, L.E., Durakiewicz, T., Martin, R.L., Peralta, J.E., Scuseria, G.E., Olson, C.G., Joyce, J.J., Guziewicz, E., J. Comp. Chem. 29, 2288 (2008).CrossRefGoogle Scholar
43.Wu, Z.Y., Jollet, F., Gota, S., Thromat, N., Gautier-Soyer, M., Petit, T., J. Phys. Condens. Matter 11, 7185 (1999).CrossRefGoogle Scholar
44.Prodan, I.D., Scuseria, G.E., Martin, R.I., Phys. Rev B 76, 033101 (2007).CrossRefGoogle Scholar
45.Paixão, J.A., Detlefs, C., Longfleld, M.J., Cacluffo, R., Santini, P., Bernhoeft, N., Reblzant, J., Lander, G.H., Phys. Rev. Lett. 89, 187202 (2002).Google Scholar
46.Rossat-Mlgnod, J., Lander, G.H., Burlet, P., Handbook on the Physics and Chemistry of the Actinides (North-Holland, Amsterdam, NL, 1984), vol. 1 p. 415.Google Scholar
47.Blackburn, E., Cacluffo, R., Magnani, N., Santini, P., Brown, P.J., Enderle, M., Lander, G.H., Phys. Rev. B 72, 184411 (2005).CrossRefGoogle Scholar
48.Cacluffo, R., Magnani, N., Santini, P., Carretta, S., Amoretti, G., Blackburn, E., Enderle, M., Brown, P.J., Lander, G.H., J. Magn. Magn. Mater. 310, 1698 (2007).CrossRefGoogle Scholar
49.Magnani, N., Cacluffo, R., Lander, G.H., Hless, A., Regnault, L.-P, J. Phys. Condens. Matter 22, 116002 (2010).CrossRefGoogle Scholar
50.Carra, P., Thole, B.T., Rev. Mod. Phys. 66, 1509 (1994).Google Scholar
51.Di Matteo, S., Joly, Y., Natoli, C.R., Phys. Rev. B 72, 144406 (2005).Google Scholar
52.Fernández-Rodríguez, J., Scagnoll, V., Mazzoli, C., Fabrlzl, F., Lovesey, S.W., Blanco, J.A., Slvla, D.S., Knight, K.S., de Bergevin, F., Paolaslnl, L., Phys. Rev. B 81, 085107 (2010).CrossRefGoogle Scholar
53.Wllklns, S.B., Cacluffo, R., Detlefs, C., Reblzant, J., Collneau, E., Wastln, F., Lander, G.H., Phys. Rev. B 73, 060406(R) (2006).Google Scholar
54.Ikushlma, K., Tsutsul, S., Haga, Y., Yasuoka, H., Walstedt, R.E., Masakl, N.M., Nakamura, A., Našu, S., Onukl, Y., Phys. Rev. B 63, 104404 (2001).Google Scholar
55.Tokunaga, Y., Homma, Y., Kambe, S., Aokl, D., Šakal, H., Yamamoto, E., Nakamura, A., Shlokawa, Y., Walstedt, R.E., Yasuoka, H., Phys. Rev. Lett. 94 137209 (2005).CrossRefGoogle Scholar
56.Magnani, N., Carretta, S., Cacluffo, R., Santini, P., Amoretti, G., Hless, A., Reblzant, J., Lander, G.H., Phys. Rev. B 78, 104425 (2008).Google Scholar