Hostname: page-component-f7d5f74f5-wqfsk Total loading time: 0 Render date: 2023-10-02T22:52:17.354Z Has data issue: false Feature Flags: { "corePageComponentGetUserInfoFromSharedSession": true, "coreDisableEcommerce": false, "coreDisableSocialShare": false, "coreDisableEcommerceForArticlePurchase": false, "coreDisableEcommerceForBookPurchase": false, "coreDisableEcommerceForElementPurchase": false, "coreUseNewShare": true, "useRatesEcommerce": true } hasContentIssue false

Shape-Memory Polymers—A Class of Novel Smart Materials

Published online by Cambridge University Press:  06 April 2011

Get access


Shape-memory polymers (SMPs) offer a number of potential technical advantages that surpass other shape-memory materials such as shape-memory metallic alloys and shape-memory ceramics. The advantages include high recoverable strain (up to 400%), low density, ease of processing and the ability to tailor the recovery temperature, programmable and controllable recovery behavior, and more importantly, low cost. This article presents the state-of-the-art regarding SMPs. First, the architecture, type, and main properties of the traditional and recently developed SMPs are introduced. Second, structural and multifunctional SMP composites are summarized and discussed. These composites greatly enhance the performance of the SMPs and widen their potential applications. Finally, current applications of SMP materials in aerospace engineering, textiles, automobiles, and medicine are presented.

Research Article
Copyright © Materials Research Society 2009

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)


1.Lendlein, A., Langer, R., Science 296, 1673 (2002).CrossRefGoogle Scholar
2.Lendlein, A., Kelch, S., Angew. Chem. Int. Ed. 41, 2034 (2002).3.0.CO;2-M>CrossRefGoogle Scholar
3.Behl, M., Lendlein, A., Mater. Today 10, 20 (2007).CrossRefGoogle Scholar
4.Gall, K., Mikulas, M., Munshi, N.A., Beavers, F., Tupper, M., J. Intell. Mater. Syst. Struct. 11, 877 (2000).CrossRefGoogle Scholar
5.Lendlein, A., Jiang, H.Y., Jünger, O., Langer, R., Nature (London) 434, 879 (2005).CrossRefGoogle Scholar
6.Bellin, I., Kelch, S., Langer, R., Lendlein, A., Proc. Nat. Acad. Sci. U.S.A. 103, 18043 (2006).CrossRefGoogle Scholar
7.Behl, M., Lendlein, A., Soft Matter 3, 58 (2007).CrossRefGoogle Scholar
8.Lan, X., Liu, Y.J., Lu, H.B., Wang, X.H., Leng, J.S., Smart Mater. Struct. 18, 024002 (2009).CrossRefGoogle Scholar
9.Liu, C., Qin, H., Mather, P.T., J. Mater. Chem. 17, 1543 (2007).CrossRefGoogle Scholar
10.Kim, B.K., Lee, S.Y., Xu, M., Polymer 7, 5781 (2007).Google ScholarPubMed
11.Li, F.K., Hou, J.N., Zhu, W., Zhang, X., Xu, M., Luo, X.L., Ma, D.Z., Kim, B.K., J. Appl. Polym. Sci. 62, 631 (1996).3.0.CO;2-U>CrossRefGoogle Scholar
12.Ma, Z.L., Zhao, W.G., Liu, Y.F., Shi, J.R., J. Appl. Polym. Sci. 63, 1511 (1997).3.0.CO;2-R>CrossRefGoogle Scholar
13.Liem, H., Yeung, L.Y., J. Appl. Polym. Sci. 105, 765 (2007).CrossRefGoogle Scholar
14.Han, S.I., Gu, B.H., Nam, K.H., Im, S.J., Kim, S.C., Im, S.S., Polymer 48, 1830 (2007).CrossRefGoogle Scholar
15.Xu, S., Zhang, M., J. Appl. Polym. Sci. 104, 3818 (2007).CrossRefGoogle Scholar
16.Kunzelman, J., Chung, T., Mather, P.T., Weder, C., J. Mater. Chem. 18, 1082 (2008).CrossRefGoogle Scholar
17.Leng, J.S., Wu, X.L., Liu, Y.J., Smart Mater. Struct. 18, 095031 (2009).CrossRefGoogle Scholar
18.Zhang, D.W., Lan, X., Liu, Y., Leng, J., Proc. SPIE Int. Soc. Opt. Eng. 6526, 65262W/1 (2007).Google Scholar
19.Kelch, S., Choi, N.Y., Wang, Z.G., Lendlein, A., Adv. Eng. Mater. 10, 494 (2008).CrossRefGoogle Scholar
20.Buckley, C.P., Prisacariu, C., Caraculacu, A., Polymer 48, 1388 (2007).CrossRefGoogle Scholar
21.Yang, B., Huang, W.M., Li, C., Lee, C.M., Li, L., Smart Mater. Struct. 13, 191 (2004).CrossRefGoogle Scholar
22.Huang, W.M., Yang, B., An, L., Li, C., Chan, Y.S., Appl. Phys. Lett. 86, 114105 (2005).CrossRefGoogle Scholar
23.Yang, B., Huang, W.M., Li, C., Li, L., Polymer 47, 1348 (2006).CrossRefGoogle Scholar
24.Yang, B., Huang, W.M., Li, C., Li, L., Chor, J.H., Scripta Mater. 53, 105 (2005).CrossRefGoogle Scholar
25.Leng, J.S., Lv, H.B., Liu, Y.J., Du, S.Y., Appl. Phys. Lett. 92, 206105 (2008).CrossRefGoogle Scholar
26.Lv, H.B., Leng, J.S., Liu, Y.J., Du, S.Y., Adv. Eng. Mater. 10, 592 (2008).CrossRefGoogle Scholar
27.Lu, H.B., Liu, Y.J., Leng, J.S., Du, S.Y., Smart Mater. Struct. 18, 085003 (2009).CrossRefGoogle Scholar
28.Jung, Y.C., So, H.H., Cho, J.W., J. Macromol. Sci. Part B Phys. 45, 453 (2006).CrossRefGoogle Scholar
29.Liang, B.H., Mott, L., Shaler, S.M., Caneba, G.T., Wood Fiber Sci. 26, 382 (1994).Google Scholar
30.Gall, K., Dunn, M.L., Liu, Y., Finch, D., Lake, M., Munshi, N.A., Acta Mater. 50, 5115 (2002).CrossRefGoogle Scholar
31.Sahoo, N.G., Jung, Y.C., Goo, N.S., Cho, J.W., Macromol. Mater. Eng. 290, 1049 (2005).CrossRefGoogle Scholar
32.Ni, Q.Q., Zhang, C.S., Fu, Y., Dai, G., Kimura, T., Compos. Struct. 81, 176 (2007).CrossRefGoogle Scholar
33.Koerner, H., Price, G., Pearce, N.A., Alexander, M., Vaia, R., Nat. Mater. 3, 115 (2004).CrossRefGoogle Scholar
34.Ohki, T., Ni, Q.Q., Iwamoto, M., Sci. Eng. Compos. Mater. 11, 137 (2004).CrossRefGoogle Scholar
35.Liu, Y.J., Lv, H.B., Lan, X., Leng, J.S., Du, S.Y., Compos. Sci. Technol. 69, 2064 (2009).CrossRefGoogle Scholar
36.Cho, J.W., Kim, J.W., Jung, Y.C., Goo, N.S., Macromol. Rapid Commun. 26, 412 (2005).CrossRefGoogle Scholar
37.Leng, J.S., Lv, H.B., Liu, Y.J., Du, S.Y., J. Appl. Phys. 104, 104917 (2008).CrossRefGoogle Scholar
38.Leng, J.S., Lv, H.B., Liu, Y.J., Du, S.Y., Appl. Phys. Lett. 91, 144105 (2007).CrossRefGoogle Scholar
39.Leng, J.S., Lan, X., Liu, Y.J., Du, S.Y., Smart Mater. Struct. 18, 074003 (2009).CrossRefGoogle Scholar
40.Leng, J.S., Lan, X., Liu, Y.J., Du, S.Y., Huang, W.M., Liu, N., Phee, S.J., Yuan, Q., Appl. Phys. Lett. 92, 014104 (2008).CrossRefGoogle Scholar
41.Leng, J.S., Huang, W.M., Lan, X., Liu, Y.J., Du, S.Y., Appl. Phys. Lett. 92, 204101 (2008).CrossRefGoogle Scholar
42.Mohr, R., Kratz, K., Weigel, T., Lucka-Gabor, M., Moneke, M., Lendlein, A., Proc. Nat. Acad. Sci. U.S.A. 103, 3540 (2006).CrossRefGoogle Scholar
43.Schmidt, A.M., Macromol. Rapid Commun. 27, 1168 (2006).CrossRefGoogle Scholar
44.Buckley, P.R., McKinley, G.H., Wilson, T.S., Small, W., Benett, W.J., Bearinger, J.P., McElfresh, M.W., Maitland, D.J., IEEE Trans. Biomed. Eng. 53, 2075 (2004).CrossRefGoogle Scholar
45.Varga, Z., Filipcsei, G., Zrínyi, M., Polymer 47, 227 (2006).CrossRefGoogle Scholar
46.Razzaq, M.Y., Anhalt, M., Frormann, L., Weidenfeller, B., Mater. Sci. Eng., A 444, 227 (2007).CrossRefGoogle Scholar
47.Razzaq, M.Y., Anhalt, M., Frormann, L., Weidenfeller, B., Mater. Sci. Eng., A 471, 57 (2007).CrossRefGoogle Scholar
48.Leng, J.S., Wu, X.L., Liu, Y.J., J. Appl. Polym. Sci. 114, 2455 (2009).CrossRefGoogle Scholar
49.Small, W., Metzger, M.F., Wilson, T.S., Maitland, D.J., IEEE J. Sel. Top. Quantum Electron. 11, 4 (2005).CrossRefGoogle Scholar
50.Maitland, D.J., Melodie, F.M., Daniel, S., Abraham, L., Laser Surg. Med. 30, 1 (2002).CrossRefGoogle Scholar
51.Small, W., Wilson, T.S., Benett, W.J., Loge, J.M., Maitland, D.J., Opt. Express 13, 8204 (2005).CrossRefGoogle Scholar
52.Zhang, D., Liu, Y., Leng, J., 15th SPIE International Conference on Smart Structures/NDE, San Diego, SPIE 6932, March 2008.Google Scholar
53.Barrett, R., Francis, W., Abrahamson, E., Lake, M.S., 47th AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference, Newport, Rhode Island, AIAA-2006-2039, 2006.Google Scholar
54.Campbell, D., Lake, M.S., 46th AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference (2005) vol. 10, p. 6735.Google Scholar
55.Steven, C.A., Munshi, N.A., Lake, M.S., Elastic Memory Composites for Deployable Space Structures; www.CTD-materials.comGoogle Scholar
56.Yin, W., Fu, T., Liu, J., Leng, J.. 16th SPIE International Conference on Smart Structures/NDE, San Diego, SPIE 7292, March 2009.Google Scholar
57.Yu, K., Yin, W., Liu, Y., Leng, J.. 16th SPIE International Conference on Smart Structures/NDE, San Diego, SPIE 7290, March 2009.Google Scholar
58.Jeong, H.M., Lee, S.Y., Kim, B.K., J. Mater. Sci. 35, 1579 (2000).CrossRefGoogle Scholar
59.Hayashi, S., Ishikawa, N., Giordano, C.J., J. Coated Fabrics 23, 74 (1993).CrossRefGoogle Scholar
60.Tobushi, H., Hashimoto, T., Ito, N., Hayashi, S., Yamada, E., J. Intell. Mater. Syst. Struct. 9, 127 (1998).CrossRefGoogle Scholar
61.Hayashi, S., Fujimura, H., patent, U.S., 5049591 (1991).Google Scholar
62.Hayashi, S., patent, U.S., 5145935 (1992).Google Scholar
63.Kobayashi, K., Hayashi, S., patent, U.S., 5,128,197 (7/1992).Google Scholar
64.Kobayashi, K., Hayashi, S., patent, U.S., 5098776 (1992).Google Scholar
65.Zhu, Y., Hu, J., Yeung, L.Y., Liu, Y., Ji, F., Yeung, K.W., Smart Mater. Struct. 15, 1385 (2006).CrossRefGoogle Scholar
66.Clark, J., patent, U.S., 0218710 (2005).Google Scholar
67.Smith, F.H., patent, U.S., 0011753 (2008).Google Scholar
68.Carter, B., patent, U.S., 7267367 (2007).Google Scholar
69.Hawkes, G.F., patent, U.S., 0125291 (2006).Google Scholar
70.Shipe, J.L., patent, U.S., 0197674 (2008).Google Scholar
71.Lambert, R.C., patent, U.S., 0117955 (2004).Google Scholar
72.Beebe, E.W., patent, U.S., 0202508 (2006).Google Scholar
73.Marble, W.A., patent, U.S., 0201116 (2005).Google Scholar
74.Doty, W.B., patent, U.S., 0202248 (2005).Google Scholar
75.Forbes, J.C., patent, U.S., 0121240 (2005).Google Scholar
76.Stuart, L.B., patent, U.S., 0214469 (2006).Google Scholar
77.Andrews, G., patent, U.S., 0272615 (2008).Google Scholar
78.Hoer, J., Klinge, U., Schachtrupp, A., Tons, C., Schumpelick, V., Langenbeck's Arch. Surg. 386, 218 (2001).CrossRefGoogle Scholar
79.Hodgson, N.C.F., Malthaner, R.A., Ostbye, T., Ann. Surg. 231, 436 (2000).CrossRefGoogle Scholar