Skip to main content Accessibility help
×
Home
Hostname: page-component-544b6db54f-prt4h Total loading time: 0.276 Render date: 2021-10-21T16:21:07.938Z Has data issue: true Feature Flags: { "shouldUseShareProductTool": true, "shouldUseHypothesis": true, "isUnsiloEnabled": true, "metricsAbstractViews": false, "figures": true, "newCiteModal": false, "newCitedByModal": true, "newEcommerce": true, "newUsageEvents": true }

Article contents

Semipolar III Nitride Semiconductors: Crystal Growth, Device Fabrication, and Optical Anisotropy

Published online by Cambridge University Press:  31 January 2011

Get access

Abstract

Semipolar InGaN/GaN quantum wells (QWs) are quite attractive as visible light emitters. One of the reasons is that a better optical transition probability is expected because of weaker internal electric fields, compared to conventional polar QWs. In addition, in-plane optical polarization anisotropy, which is absent in conventional QWs, is another relevant property because it affects device design and also may provide a means for novel applications. We revealed that the in-plane optical anisotropy in semipolar QWs switched from one direction perpendicular to the [0001] crystal axis to the perpendicular direction as the In composition increases. This is a property unique to semipolar QWs and enables, for example, to make cavity mirrors of laser diodes by cleavage. In this article, we describe the concept of semipolar planes and fabrication of high-quality epitaxial films for semipolar QWs. Furthermore, we discuss device fabrication and optical polarization anisotropy.

Type
Research Article
Copyright
Copyright © Materials Research Society 2009

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1Nakamura, S., Pearton, S., and Fasol, G., The Blue Laser Diode, 2nd ed. (Spinger, Heidelberg, 2000).CrossRefGoogle Scholar
2Fiorentini, V., Bernardini, F., Della Sala, F., Di Carlo, A., and Lugli, P., Phys. Rev. B 60, 8849 (1999).CrossRefGoogle Scholar
3Waltereit, P., Brandt, O., Trampert, A., Grahn, H.T., Menniger, J., Ramsteiner, M., Reiche, M., Ploog, K.H., Nature (London) 406, 865 (2000).CrossRefGoogle Scholar
4Okamoto, K., Ohta, H., Nakagawa, D., Sonobe, M., Ichihara, J., Takasu, H., Jpn. J. Appl. Phys. 45, L1197 (2006).CrossRefGoogle Scholar
5Schmidt, M.C., Kim, K.-C., Sato, H., Fellows, N., Masui, H., Nakamura, S., DenBaars, S.P., Speck, J.S., Jpn. J. Appl. Phys. 46, L126 (2007).CrossRefGoogle Scholar
6Chitnis, A., Chen, C., Adivarahan, V., Shatalov, M., Kuokstis, E., Mandavilli, V., Yang, J., Khan, M.A., Appl. Phys. Lett. 84, 3663 (2004).CrossRefGoogle Scholar
7Haskell, B.A., Wu, F., Matsuda, S., Craven, M.D., Fini, P.T., DenBaars, S.P., Speck, J.S., Nakamura, S., Appl. Phys. Lett. 83, 1554 (2003).CrossRefGoogle Scholar
8Pfeiffer, L., Störmer, H.L., West, K., Baldwin, K.W., J. Cryst. Growth 111, 333 (1991).CrossRefGoogle Scholar
9Ko, H.-C., Yamaguchi, S., Kurusu, H., Kawakami, Y., Fujita, Sz., Fujita, Sg., Jpn. J. Appl. Phys. 35, L366 (1996).CrossRefGoogle Scholar
10Chichibu, S.F., Yamaguchi, H., Zhao, L., Kubota, M., Onuma, T., Okamoto, K., Ohta, H., Appl. Phys. Lett. 93, 151908 (2008).CrossRefGoogle Scholar
11Park, S.-H., Chuang, S.-L., Phys. Rev. B 59, 4725 (1999).CrossRefGoogle Scholar
12Takeuchi, T., Amano, H., Akasaki, I., Jpn. J. Appl. Phys. 39, 413 (2000).CrossRefGoogle Scholar
13Romanov, A.E., Baker, T.J., Nakamura, S., Speck, J.S., J. Appl. Phys. 100, 23522 (2006).CrossRefGoogle Scholar
14Nishizuka, K., Funato, M., Kawakami, Y., Fujita, Sg., Narukawa, Y., Mukai, T., Appl. Phys. Lett. 85, 3122 (2004).CrossRefGoogle Scholar
15Nishizuka, K., Funato, M., Kawakami, Y., Narukawa, Y., Mukai, T., Appl. Phys. Lett. 87, 231901 (2005).CrossRefGoogle Scholar
16Ueda, M., Kojima, K., Funato, M., Kawakami, Y., Narukawa, Y., Mukai, T., Appl. Phys. Lett. 89, 211907 (2006).CrossRefGoogle Scholar
17Funato, M., Ueda, M., Kawakami, Y., Narukawa, Y., Kosugi, T., Takahashi, M., Mukai, T., Jpn. J. Appl. Phys. 45, L659 (2006).CrossRefGoogle Scholar
18Baker, T.J., Haskell, B.A., Wu, F., Speck, J.S., Nakamura, S., Jpn. J. Appl. Phys. 45, L154 (2006).CrossRefGoogle Scholar
19Kojima, K., Funato, M., Kawakami, Y., Masui, S., Nagahama, S., Mukai, T., Appl. Phys. Lett. 91, 251107 (2007).CrossRefGoogle Scholar
20Sato, H., Tyagi, A., Zhong, H., Fellows, N., Chung, R.B., Saito, M., Fujito, K., Speck, J.S., DenBaars, S.P., Nakamura, S., Phys. Stat. Sol. (RRL) 1, 162 (2007).CrossRefGoogle Scholar
21Sato, H., Chung, R.B., Hirasawa, H., Fellows, N., Masui, H., Wu, F., Saito, M., Fujito, K., Speck, J.S., DenBaars, S.P., Nakamura, S., Appl. Phys. Lett. 92, 221110 (2008).CrossRefGoogle Scholar
22Asamizu, H., Saito, M., Fujito, K., Speck, J.S., DenBaars, S.P., Nakamura, S., Appl. Phys. Exp. 1, 091102 (2008).CrossRefGoogle Scholar
23Tyagi, A., Lin, Y.-D., Cohen, D.A., Saito, M., Fujito, K., Speck, J.S., DenBaars, S.P., Nakamura, S., Appl. Phys. Exp. 1, 091103 (2008).CrossRefGoogle Scholar
24Tanikawa, T., Hikosaka, T., Honda, Y., Yamaguchi, M., Sawaki, N., Phys. Stat. Sol. (c) 5, 2966 (2008).CrossRefGoogle Scholar
25Funato, M., Kawakami, Y., J. Appl. Phys. 102, 093501 (2008).CrossRefGoogle Scholar
26Ueda, M., Funato, M., Kojima, K., Kawakami, Y., Narukawa, Y., Mukai, T., Phys. Rev. B 78, 233303 (2008).CrossRefGoogle Scholar
27Takeuchi, T., Lester, S., Basile, D., Girolami, G., Twist, R., Mertz, F., Wong, M., Schneider, R., Amano, H., Akasaki, I., IPAP Conf. Series 1, 137 (2000).Google Scholar
28Hikosaka, T., Narita, T., Honda, Y., Yamaguchi, M., Sawaki, N., Appl. Phys. Lett. 84, 4717 (2004).CrossRefGoogle Scholar
29Neubert, B., Brückner, P., Habel, F., Scholz, F., Riemann, T., Christen, J., Beer, M., Zweck, J., Appl. Phys. Lett. 87, 182111 (2005).CrossRefGoogle Scholar
30Baker, T.J., Haskell, B.A., Wu, F., Fini, P.T., Speck, J.S., Nakamura, S., Jpn. J. Appl. Phys. 44, L920 (2005).CrossRefGoogle Scholar
31Wunderer, T., Brückner, P., Neubert, B., Scholz, F., Feneberg, M., Lipski, F., Schirra, M., Thonke, K., Appl. Phys. Lett. 89, 041121 (2006).CrossRefGoogle Scholar
32Feneberg, M., Lipski, F., Sauer, R., Thonke, K., Wunderer, T., Neubert, B., Bückner, P., Scholz, F., Appl. Phys. Lett. 89, 242112 (2006).CrossRefGoogle Scholar
33Tyagi, A., Zhong, H., Fellows, N.N., Iza, M., Speck, J.S., DenBaars, S.P., Nakamura, S., Jpn. J. Appl. Phys. 46, L129 (2007).CrossRefGoogle Scholar
34Sharma, R., Pattison, P.M., Masui, H., Farrel, R.M., Baker, T.J., Haskell, B.A., Wu, F., DenBaars, S.P., Speck, J.S., Nakamura, S., Appl. Phys. Lett. 87, 231110 (2005).CrossRefGoogle Scholar
35Kojima, K., Ueda, M., Funato, M., Kawakami, Y., Phys. Status Solidi B 244, 1853 (2007).CrossRefGoogle Scholar
36Gil, B., Appl. Phys. Lett. 90, 121903 (2007).CrossRefGoogle Scholar
37Flissikowski, T., Omae, K., Misra, P., Brandt, O., Grahn, H.T., Phys. Rev. B 74, 085323 (2006).CrossRefGoogle Scholar
38Ghosh, S., Brandt, O., Grahn, H.T., Ploog, K.H., Appl. Phys. Lett. 81, 3380 (2002).CrossRefGoogle Scholar
39Marchand, H., Ibbetson, J.P., Fini, P.T., Keller, S., DenBaars, S.P., Speck, J.S., Mishra, U.K., J. Cryst. Growth 195, 328 (1998).CrossRefGoogle Scholar
40Hiramatsu, K., Nishiyama, K., Onishi, M., Mizutani, H., Narukawa, M., Motogaito, A., Miyake, H., Iyechika, Y., Maeda, T., J. Cryst. Growth 221, 316 (2000).CrossRefGoogle Scholar
41Funato, M., Kotani, T., Kondou, T., Kawakami, Y., Narukawa, Y., Mukai, T., Appl. Phys. Lett. 88, 261920 (2006).CrossRefGoogle Scholar
42Ueda, M., Kondou, T., Hayashi, K., Funato, M., Kawakami, Y., Narukawa, Y., Mukai, T., Appl. Phys. Lett. 88, 171907 (2007).CrossRefGoogle Scholar
43Funato, M., Kondou, T., Hayashi, K., Nishiura, S., Ueda, M., Kawakami, Y., Narukawa, Y., Mukai, T., Appl. Phys. Exp. 1, 011106 (2008).CrossRefGoogle Scholar
44Funato, M., Hayashi, K., Ueda, M., Kawakami, Y., Narukawa, Y., Mukai, T., Appl. Phys. Lett. 93, 021126 (2008).CrossRefGoogle Scholar
45Paskova, T., Kroeger, R., Hommel, D., Paskov, P.P., Monemar, B., Preble, E., Hanser, A., Williams, N.M., and Tutor, M., Phys. Status Solidi C 4, 2536 (2007).CrossRefGoogle Scholar
46Fujito, K., Kiyomi, K., Mochizuki, T., Oota, H., Namita, H., Nagao, S., Fujimura, I., Phys. Status Solidi A 205, 1056 (2008).CrossRefGoogle Scholar
47Korona, K.P., Wysmołek, A., Pakuła, K., Stěpniewski, R., Baranowski, J.M., Grzegory, I., Łucznik, B., Wróblewski, M., Porowski, S., Appl. Phys. Lett. 69, 788 (1996).CrossRefGoogle Scholar
48Kornitzer, K., Ebner, T., Grehi, M., Thonke, K., Sauer, R., Kirchner, C., Schwegler, V., Kamp, M., Leszczynski, M., Grzegory, I., Porowski, S., Phys. Status Solidi B 216, 5 (1999).3.0.CO;2-F>CrossRefGoogle Scholar
49Torii, K., Deguchi, T., Sota, T., Suzuki, K., Chichibu, S., Nakamura, S., Phys. Rev. B 60, 4723 (1999).CrossRefGoogle Scholar
50Skromme, B.J., Palle, K.C., Poweleit, C.D., Yamane, H., Aoki, M., DiSalvo, F.J., Appl. Phys. Lett. 81, 3765 (2002).CrossRefGoogle Scholar
51Takeuchi, T., Wetzel, C., Yamaguchi, S., Sakai, H., Amano, H., Akasaki, I., Kaneko, Y., Nakagawa, S., Yamaoka, Y., Yamada, N., Appl. Phys. Lett. 73, 1691 (1998).CrossRefGoogle Scholar
52Brown, I.H., Pope, I.A., Smowton, P.M., Blood, P., Thomson, J.D., Chow, W.W., Bour, D.P., Kneissl, M., Appl. Phys. Lett. 86, 131108 (2005).CrossRefGoogle Scholar
53Sala, F.D., Carlo, A.D., Lugli, P., Bernardini, F., Fiorentini, V., Scholz, R., Jancu, J.-M., Appl. Phys. Lett. 74, 2002 (1999).CrossRefGoogle Scholar
54Yamaguchi, A.A., Jpn. J. Appl. Phys. 46, L789 (2007).CrossRefGoogle Scholar
55Chen, C.-N., Chang, S.-H., Hung, M.-L., Chiang, J.-C., Lo, I., Wang, W.-T., Gau, M.-H., Kao, H.-F., Lee, M.-E., J. Appl. Phys. 101, 043104 (2007).CrossRefGoogle Scholar
56Gil, B., Alemu, A., Phys. Rev. B 56, 12446 (1997).CrossRefGoogle Scholar
57Ghosh, S., Waltereit, P., Brandt, O., Grahn, H.T., Ploog, K.H., Phys. Rev. B 65, 075202 (2002).CrossRefGoogle Scholar
58Gil, B., Hamdani, F., Morkoç, H., Phys. Rev. B 54, 7678 (1996).CrossRefGoogle Scholar
59Alemu, A., Gil, B., Julier, M., Nakamura, S., Phys. Rev. B 57, 3761 (1998).CrossRefGoogle Scholar
60Feneberg, M., Lipski, F., Sauer, R., Thonke, K., Brüuckner, P., Neubert, B., Wunderer, T., Scholz, F., J. Appl. Phys. 101, 053530 (2007).CrossRefGoogle Scholar
61Sun, Y.J., Brandt, O., Ramsteiner, M., Grahn, H.T., Ploog, K.H., Appl. Phys. Lett. 82, 3850 (2003).CrossRefGoogle Scholar
62Nakagawa, S., Tsujimura, H., Okamoto, K., Kubota, M., Ohta, H., Appl. Phys. Lett. 91, 171110 (2007).CrossRefGoogle Scholar
63Masui, H., Yamada, H., Iso, K., Nakamura, S., DenBaars, S.P., Appl. Phys. Lett. 92, 091105 (2008).CrossRefGoogle Scholar
64Vurgaftman, I., Meyer, J.R., J. Appl. Phys. 94, 3675 (2003).CrossRefGoogle Scholar
65Kojima, K., Kamon, H., Funato, M., Kawakami, Y., Phys. Status Solidi C 5, 3038 (2008).CrossRefGoogle Scholar
66Bir, G.L., Pikus, G.E., Symmetry and Strain-Induced Effects in Semiconductors, 31, pp. 322337 (Wiley, New York, 1974).Google Scholar

Send article to Kindle

To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Semipolar III Nitride Semiconductors: Crystal Growth, Device Fabrication, and Optical Anisotropy
Available formats
×

Send article to Dropbox

To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

Semipolar III Nitride Semiconductors: Crystal Growth, Device Fabrication, and Optical Anisotropy
Available formats
×

Send article to Google Drive

To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

Semipolar III Nitride Semiconductors: Crystal Growth, Device Fabrication, and Optical Anisotropy
Available formats
×
×

Reply to: Submit a response

Please enter your response.

Your details

Please enter a valid email address.

Conflicting interests

Do you have any conflicting interests? *