Skip to main content Accessibility help
×
Home
Hostname: page-component-65dc7cd545-x46dj Total loading time: 1.535 Render date: 2021-07-24T23:35:21.428Z Has data issue: true Feature Flags: { "shouldUseShareProductTool": true, "shouldUseHypothesis": true, "isUnsiloEnabled": true, "metricsAbstractViews": false, "figures": true, "newCiteModal": false, "newCitedByModal": true, "newEcommerce": true, "newUsageEvents": true }

Article contents

Physical Properties of SiC

Published online by Cambridge University Press:  29 November 2013

Get access

Extract

While silicon carbide has been an industrial product for over a century, it is only now emerging as the semiconductor of choice for high-power, high-temperature, and high-radiation environments. From electrical switching and sensors for oil drilling technology to all-electric airplanes, SiC is finding a place which is difficult to fill with presently available Si or GaAs technology. In 1824 Jöns Jakob Berzelius published a paper which suggested there might be a chemical bond between the elements carbon and silicon. It is a quirk of history that he was born in 1779 in Linköping, Sweden where he received his early education, and now, 172 years later, Linkoping University is the center of a national program in Sweden to study the properties of SiC as a semiconductor.

Type
Silicon Carbide Electronic Materials and Devices
Copyright
Copyright © Materials Research Society 1997

Access options

Get access to the full version of this content by using one of the access options below.

References

1.Frazier, B.W., J. Franklin Inst. (1893) p. 287.Google Scholar
2.Lambrecht, W.R.L., in Diamond, SiC and Nitride Wide Bandgap Semiconductors, edited by Carter, C.H. Jr., Gildenblat, G., Nakamura, S., and Nemanich, R.J. (Mater. Res. Soc. Symp. Proc. 339, Pittsburgh, 1994) p. 565.Google Scholar
3.Lambrecht, W.R.L. and Segall, B., Phys. Rev. B 52 (1995) p. R2249.CrossRefGoogle Scholar
4.Käckel, P., Wenzien, B., and Bechstedt, F., Phys. Rev. 50 (1994) p. 10761.CrossRefGoogle Scholar
5.Tsvetkov, V.F., Allen, S.T., Kong, H.S., and Carter, C.H. Jr., in Proc. 6th Int. Conf. on Silicon Carbide and Related Materials 1995, edited by Nakashima, S., Matsunami, H., Yoshida, S., and Harima, H. (Institute of Physics Conference Series No. 142, Bristol, 1996) p. 17.Google Scholar
6.Patrick, L., Phys. Rev. B 5 (1972) p. 2198.CrossRefGoogle Scholar
7.Schöner, A., Nordell, N., Rottner, K., Helbig, R., and Pensl, G., in Proc. 6th Int. Conf. on Silicon Carbide and Related Materials 1995, edited by Nakashima, S., Matsunami, H., Yoshida, S., and Harima, H. (Institute of Physics Conference Series No. 142, Bristol, 1996) p. 493.Google Scholar
8.Pensl, G. and Choyke, W.J., Physica B 185 (1993) p. 264.CrossRefGoogle Scholar
9.Schadt, M., Pensl, G., Devaty, R.P., Choyke, W.J., Stein, R., and Stephani, D., Appl. Phys. Lett. 65 (1994) p. 3120.CrossRefGoogle Scholar
10.Schaffer, W.J., Negley, G.M., Irvine, K.G., and Palmour, J.W., in Advanced Metallization for Devices and Circuits-Science, Technology, and Manufacturability, edited by Murarka, S.P., Katz, A., Tu, K.N., and Maex, K. (Mater. Res. Soc. Symp. Proc. 337, Pittsburgh, 1994) p. 595.Google Scholar
11.Troffer, T., Peppermüller, C., Pensl, G., Rottner, K., and Schöner, A., J. Appl. Phys. 80 (1996) p. 3739.CrossRefGoogle Scholar
12.Reinke, J.Greulich-Weber, S., Spaeth, J-M., Kalabukhova, E.N., Lukin, S.N., and Mokhov, E.N., in Proc. 5th Int. Conf. on Silicon Carbide and Related Materials, edited by Spencer, M.G., Devaty, R.P., Edmond, J.A., Khan, M.A., Kaplan, R., and Rahman, M. (Institute of Physics Conference Series No. 137, Bristol, 1994) p. 211.Google Scholar
13.Larkin, D.J., Sridhara, S.G., Devaty, R.P., and Choyke, W.J., J. Electron. Mater. 24 (4) (1995) p. 289.CrossRefGoogle Scholar

Send article to Kindle

To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Physical Properties of SiC
Available formats
×

Send article to Dropbox

To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

Physical Properties of SiC
Available formats
×

Send article to Google Drive

To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

Physical Properties of SiC
Available formats
×
×

Reply to: Submit a response

Please enter your response.

Your details

Please enter a valid email address.

Conflicting interests

Do you have any conflicting interests? *