Skip to main content Accessibility help
×
Home
Hostname: page-component-564cf476b6-wkm24 Total loading time: 0.275 Render date: 2021-06-18T13:11:27.735Z Has data issue: false Feature Flags: { "shouldUseShareProductTool": true, "shouldUseHypothesis": true, "isUnsiloEnabled": true, "metricsAbstractViews": false, "figures": true, "newCiteModal": false, "newCitedByModal": true, "newEcommerce": true }

Article contents

A Perspective on Modeling Materials in Extreme Environments: Oxidation of Ultrahigh-Temperature Ceramics

Published online by Cambridge University Press:  31 January 2011

Get access

Abstract

The broader context of this discussion, based on a workshop where materials technologists and computational scientists engaged in a dialogue, is an awareness that modeling and simulation techniques and computational capabilities may have matured sufficiently to provide heretofore unavailable insights into the complex microstructural evolution of materials in extreme environments.As an example, this article examines the study of ultrahigh-temperature oxidation-resistant ceramics, through the combination of atomistic simulation and selected experiments.We describe a strategy to investigate oxygen transport through a multi-oxide scale—the protective layer of ultrahigh-temperature ceramic composites ZrB2-SiC and HfB2-SiC—by combining first-principles and atomistic modeling and simulation with selected experiments.

Type
Research Article
Copyright
Copyright © Materials Research Society 2006

Access options

Get access to the full version of this content by using one of the access options below.

References

1Computational Science: Ensuring America's Competitiveness, report of the President's Information Technology Advisory Committee (PITAC), www.nitrd.gov/pitac (accessed April 2006).Google Scholar
2Another recent call for community response is the NSF Blue Ribbon Panel report on Simulation-Based Engineering Science, www. ices.utexas.edu/events/SBES_Final_Report.pdf (accessed April 2006).Google Scholar
3Yip, S. ed., Handbook of Materials Modeling (Springer, New York, 2005).CrossRefGoogle Scholar
4AFOSR Specialist Meeting on Modeling Materials in Extreme Environments, Washington, D.C., September 2425, 2005, alum.mit.edu/ www/liju99/Papers/05/ME2 (accessed April 2006).Google Scholar
5Talmy, I.G. et al. , in Proc. 22nd Annu. Conf. Composites Advanced Ceramics, Materials, and Structures, edited by Bray, D. (American Ceramic Society, Westerville, Ohio, 1998).Google Scholar
6Opeka, M.M.Talmy, I.G. and Zaykoski, J.A.J. Mater. Sci. 39 (2004) p. 5887.CrossRefGoogle Scholar
7Beard, W.C.Research on Phase Equilibria between Boron Oxides and Refractory Oxides, including Silicon and Aluminum Oxides, Air Force Contract 33(616)-6509, Report 931-9 (AD 271937) (1962).Google Scholar
8Graham, H.C. in Ceramics in Severe Environments, edited by Kriegel, W.W. and Palmour, H. (Plenum Press, New York, 1971).Google Scholar
9Kaufman, L.Clougherty, E.V. and Berkowitz-Mattuck, J.B., Trans. Metall. Society AIME 239 (1967) p. 458.Google Scholar
10Berkowitz-Mattuck, J.B., J. Electrochem. Soc. 113 (1966) p. 908.CrossRefGoogle Scholar
11Wagner, C.Zeitschrift für Physikalische Chemie, Abteilung B, Chemie der Elemen-tarprozesse Aufbau der Materie 32 (1936) p. 447.Google Scholar
12Wagner, C.W. in Atom Movements (American Society For Metals, Cleveland, Ohio, 1951) p.153.Google Scholar
13Rapp, R.A.High-Temperature Corrosion (American Chemical Society, Washington, D.C., 1980).Google Scholar
14Opila, E.Levine, S. and Lorincz, J.J. Mater. Sci. 39 (2004) p. 5969.CrossRefGoogle Scholar
15Talmy, I.G.Zaykoski, J.A.Opeka, M.M. and Dallek, S. in High-Temperature Corrosion and Materials Chemistry III, edited by Opila, E.J.McNallan, M.J.Shores, D.A. and Shifler, D.A. (The Electrochemical Society, Pennington, N.J., 2001) p.144.Google Scholar
16Vinckier, C.Coeckelberghs, P.Stevens, G.Heyns, M. and Jaegere, S. De, J. Appl. Phys. 62 (1987) p. 1450.CrossRefGoogle Scholar
17Raspopov, S.A.Gusakov, A.G.Voropayev, A.D. and Grishin, V.K. in Fundamentals Aspects of High-Temperature Corrosion VI, edited by Shores, D.A.Rapp, R.A. and Hou, P. (The Electrochemical Society, Pennington, N.J., 1996) p.151.Google Scholar
18Rosner, D.E. and Allendorf, H.D.AIAA J. 6 (1968) p. 650.Google Scholar
19Rosner, D.E. and Allendorf, H.D.J. Phys. Chem. 74 (1970) p. 1829.CrossRefGoogle Scholar
20Balat, M.J.H.J. Eur. Ceram. Soc. 16 (1996) p.55.CrossRefGoogle Scholar
21Fletcher, D.G. and Bamford, D.J. Arcjet Flow Characterization Using Laser-Induced Fluorescence of Atomic Species (AIAA, 1998) paper 98-2458.Google Scholar
22Bull, J.D.Rasky, D.J. and Karika, J.C. in Proc. 16th Conf. Metal Matrix, Carbon, and Ceramic Matrix Composites (Cocoa Beach, Fla., 1992) p.247.Google Scholar
23Bull, J.D.Rasky, D.J.Tran, H.K. and Bal-ter-Peterson, A., in Proc. 17th Conf. Metal Matrix, Carbon, and Ceramic Matrix Composites, edited by Buckley, J.D. (Cocoa Beach, Fla., 1993) p. 653.Google Scholar
24Metcalfe, A.G.Elsner, N.B.Allen, D.T.Wuchina, E.Opeka, M. and Opila, E.Electrochem. Soc. Proc. 99–38 (1999) p. 489.Google Scholar
25Deal, B.E. and Grove, A.S.J. Appl. Phys. 36 (1965) p. 3770.CrossRefGoogle Scholar
26Gusev, E.P.Lu, H.C.Gustafsson, T. and Garfunkel, E.Phys. Rev. B 52 (1995) p. 1759.CrossRefGoogle Scholar
27Rosencher, E.Straboni, A.Rigo, S. and Amsel, G.O.Appl. Phys. Lett. 34 (1979) p. 254.CrossRefGoogle Scholar
28Hamann, D.R.Phys. Rev. Lett. 81 (1998) p.3447.CrossRefGoogle Scholar
29Bongiorno, A. and Pasquarello, A.Microelec-tron. Eng. 59 (2001) p. 167.CrossRefGoogle Scholar
30Bongiorno, A. and Pasquarello, A.Phys. Rev. Lett. 88 125901–1, 125901-4 (2002).CrossRefGoogle Scholar
31Bongiorno, A. and Pasquarello, A.J. Phys.: Condens. Matter 15 (2003) p. S1553.Google Scholar
32Bongiorno, A. and Pasquarello, A.Phys. Rev. B 70 195312 (2004).CrossRefGoogle Scholar
33Norton, F.J.Nature 191 (1961) p. 701.CrossRefGoogle Scholar
34Bongiorno, A. and Pasquarello, A.Phys. Rev. Lett. 93 086102 (2004).CrossRefGoogle Scholar
35Bongiorno, A. and Pasquarello, A.Appl. Phys. Lett. 83 (2003) p. 1417.CrossRefGoogle Scholar
36Bongiorno, A.Pasquarello, A.Hybertsen, M.S. and Feldman, L.C.Phys. Rev. Lett. 90 186101 (2003).CrossRefGoogle Scholar
37Bongiorno, A. and Pasquarello, A.Appl. Surf. Sci. 234 (2004) p. 190.CrossRefGoogle Scholar
38Campbell, T.Kalia, R.K.Nakano, A.Vashishta, P.Ogata, S. and Rodgers, S.Phys. Rev. Lett. 82 (1999) p. 4866.CrossRefGoogle Scholar
39Campbell, T.J.Aral, G.Ogata, S.Kalia, R.K.Nakano, A. and Vashishta, P.Phys. Rev. B 71 205413 (2005).CrossRefGoogle Scholar
40Streitz, F.H. and Mintmire, J.W.Phys. Rev. B 50 (1994) p. 11996.CrossRefGoogle Scholar
41Sanchez-Lopez, J.C., Fernandez, A.Conde, C.F.Conde, A.Morant, C. and Sanz, J.M.Nanostruct. Mater. 7 (1996) p. 813.CrossRefGoogle Scholar
42Hinze, J.W.Tripp, W.C. and Graham, H.C.J. Electrochem. Soc. 122 (1975) p. 1249.CrossRefGoogle Scholar
43Levine, S.R.Opila, E.J.Halbig, M.C.Kiser, J.D.Singh, M. and Salem, J.A.J. Eur. Ceram. Soc. 22 (2002) p. 2757.CrossRefGoogle Scholar
44Rogers, B.R.Song, Z.Marschall, J.Queraltó, N., and Zorman, C.A. in High-Temperature Corrosion and Materials Chemistry V, edited by Opila, E. (The Electrochemical Society, Pen-nington, N.J., 2004) p. 268.Google Scholar
45Marschall, J.Chamberlain, A.Crunkleton, D. and Rogers, B.J. Spacecraft Rock. 41 (2004) p.576.CrossRefGoogle Scholar
46Hoshino, T.Hata, M.Neya, S.Nishioka, Y.Watanabe, T.Tatsumura, K. and Ohdomari, I.Japanese J. Appl. Phys. 42 (2003) p. 3560.CrossRefGoogle Scholar
47Hoshino, T.Hata, M.Neya, S.Nishioka, Y.Watanabe, T.Tatsumura, K. and Ohdomari, I.Japanese J. Appl. Phys. 42 (2003) p. 6535.CrossRefGoogle Scholar
48Stoneham, A.M.Szymanski, M.A. and Shluger, A.L.Phys. Rev. B 63 241304–1, 241304-4 (2001).CrossRefGoogle Scholar
49Foster, A.S.Shluger, A.L. and Nieminen, R.M., Phys. Rev. Lett. 89 225901 (2002).CrossRefGoogle Scholar
50Foster, A.S.Gejo, F. Lopez, Shluger, A.L. and Nieminen, R.M.Phys. Rev. B 65 174117 (2002).CrossRefGoogle Scholar
51Ogata, S.Lidorikis, E.Shimojo, F.Nakano, A.Vashishta, P. and Kalia, R.K.Comput. Phys. Commun. 138 (2001) p. 143.CrossRefGoogle Scholar
52Ogata, S.Shimojo, F.Kalia, R.K.Nakano, A. and Vashishta, P.J. Appl. Phys. 95 (2004) p. 5316.CrossRefGoogle Scholar
53Duin, A.C.T. van, Dasgupta, S.Lorant, F. and Goddard, W.A.J. Phys. Chem. A 105 (2001) p.9396.CrossRefGoogle Scholar
54Greengard, L. and Rokhlin, V.J. Comput. Phys. 73 (1987) p. 325.CrossRefGoogle Scholar
55Ogata, S.Campbell, T.J.Kalia, R.K.Nakano, A.Vashishta, P. and Vemparala, S.Comput. Phys. Commun. 153 (2003) p. 445.CrossRefGoogle Scholar
56Nakano, A.Comput. Phys. Commun. 104 (1997) p. 59.CrossRefGoogle Scholar
57Nakano, A.Kalia, R.K.Vashishta, P.Campbell, T.J.Ogata, S.Shimojo, F. and Saini, S.Sci. Prog. 10 (2002) p. 263.Google Scholar
58Henkelman, G. and Jonsson, H.J. Chem. Phys. 113 (2000) p. 9978.CrossRefGoogle Scholar
59Zhu, T.Li, J.Lin, X. and Yip, S.J. Mech. Phys. Solids 53 (2005) p. 1597.CrossRefGoogle Scholar
60Y, Wang, Chen, L.Q. and Khachaturyan, A.G., Acta Metallurg. Mater. 41 (1993) p. 279.Google Scholar
61Chen, L.Q.Annu. Rev. Mater. Res. 32 (2002) p.113.CrossRefGoogle Scholar
62Hoyt, J.J.Asta, M. and Karma, A.Phys. Rev. Lett. 86 (2001) p. 5530.CrossRefGoogle Scholar
63Ven, A. Van der, Aydinol, M.K.Ceder, G.Kresse, G. and Hafner, J.Phys. Rev. B 58 (1998) p.2975.Google Scholar
64Chen, S.L.Daniel, S.Zhang, F.Chang, Y.A.Yan, X.Y.Xie, F.Y.Schmid-Fetzer, R., and Oates, W.A.Calphad-Computer Coupling of Phase Diagrams and Thermochemistry 26 (2002) p. 175.CrossRefGoogle Scholar
65deFontaine, D. in Solid State Physics: Advances in Research and Applications, Vol. 47 (1994) p. 33.CrossRefGoogle Scholar
66Walle, A. van de, Asta, M. and Ceder, G. in Calphad-Computer Coupling of Phase Diagrams and Thermochemistry 26 (2002) p. 539.CrossRefGoogle Scholar

Send article to Kindle

To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

A Perspective on Modeling Materials in Extreme Environments: Oxidation of Ultrahigh-Temperature Ceramics
Available formats
×

Send article to Dropbox

To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

A Perspective on Modeling Materials in Extreme Environments: Oxidation of Ultrahigh-Temperature Ceramics
Available formats
×

Send article to Google Drive

To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

A Perspective on Modeling Materials in Extreme Environments: Oxidation of Ultrahigh-Temperature Ceramics
Available formats
×
×

Reply to: Submit a response

Please enter your response.

Your details

Please enter a valid email address.

Conflicting interests

Do you have any conflicting interests? *