Hostname: page-component-546b4f848f-lx7sf Total loading time: 0 Render date: 2023-06-03T15:50:30.655Z Has data issue: false Feature Flags: { "useRatesEcommerce": true } hasContentIssue false

Next-Generation Fibrous Media for Water Treatment

Published online by Cambridge University Press:  31 January 2011

Get access


Fibrous media in the form of nonwoven filters have been used extensively in water treatment as pre-filters or to support the medium that does the separation. Nonwoven media are composed of randomly oriented micron-size fibers and provide a one step separation as a substitute for conventional processes comprising chemical addition, flocculation, sedimentation, and sand filtration. At present the use of nonwoven filter media is limited to pre-filters and is not used further downstream as high performance filters. However it is expected that by reducing the fiber size in the nanometer range, higher filtration efficiency can be achieved. With the advent of nanotechnology, the ease of producing high quality nano scaled fibers is now a reality. Recent advancements in nanofibrous media through surface modifications have shown that nonwoven media can be used beyond the prefilter stage. Furthermore the pore size of the filter media can be controlled through modification of fiber size and thickness of membranes. These nanofibrous membranes possess high surface area and large porosity leading to high flux, low pressure membranes. This article highlights important opportunities and challenges associated with developing nanofibrous media for water treatment. In addition, we have attempted to capture a snapshot of this rapidly developing new area of fibrous media for water treatment for the benefit of the wider membrane community.

Research Article
Copyright © Materials Research Society 2008

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)


1.Steffens, J., Filtration 7 (1), 26 (2007).Google Scholar
2.Cheryan, M., Ultrafiltration and Microfiltration Handbook, (Lancaster, Pa, Technomic Publishing Co., 1998).Google Scholar
3.Kaur, S., Surface Modification of Electrospun Poly(vinylidene Fluoride) Nanofibrous Microfiltration Membrane, MEng Thesis (2007).Google Scholar
4.Dickenson, C., Filters and Filtration Handbook, Third Edition (Elsevier Advanced Technology, Oxford, UK, 1992).Google Scholar
5.Hutten, I.M., Handbook of Nonwoven Filter Media (Elsevier, 2007).Google Scholar
6.Nazaroff, W., Alvarez-Cohen, L., Environmental Engineering Science (Wiley, NY, 2001).Google Scholar
7.Won, W., Shields, P., Membrane Practices for Water Treatment, Duranceau, S.J., Ed. (American Water Works Association, Denver, CO, 2001).Google Scholar
8.Porter, M.C., Handbook of Industrial Membrane Technology (Noyes Publishing, NJ, 1990).Google Scholar
9.Grafe, T., Graham, K., Paper presented at INTC 2002, International nonwovens Technical Conference (Joint INDA-TAPPI) (Atlanta, Georgia, September 24–26, 2002).Google Scholar
10.Vogt, H., Filtr. Sep. 42 (7), 36 (2005).CrossRefGoogle Scholar
11.Ward, G., Filtr. Sep. 42 (7), 22 (2005).CrossRefGoogle Scholar
12.Gopal, R., Kaur, S., Ma, Z., Chan, C., Ramakrishna, S., Matsuura, T., J. Mem. Sci. 281, 581 (2006).CrossRefGoogle Scholar
13.Kosmider, K., Scott, J., Filtr. Sep. 39 (6), 20 (2002).CrossRefGoogle Scholar
14.Gopal, R., Feng, C.Y., Chan, C., Ramakrishna, S., Matsuura, T., Proceedings of the 2007, AWWA Membrane Technology Conference (March 18–21, 2007).Google Scholar
15.Gopal, R., Kaur, S., Feng, C.Y., Ma, Z., Chan, C., Ramakrishna, S., Tabe, S., Matsuura, T., J. Mem. Sci. 289, 210 (2007).CrossRefGoogle Scholar
16.Komlenic, R., Filtr. Sep. 44 (5), 26 (2007).CrossRefGoogle Scholar
17.Kaur, S., Ma, Z., Gopal, R., Ramakrishna, S., Matsuura, T., Langmuir, In press.Google Scholar
18.Yoon, K., Kim, K., Wang, X., Fang, D., Hsiao, B.S., Chu, B., Polymer 47, 2434 (2006).CrossRefGoogle Scholar
19.Wang, X., Fang, D., Yoon, K., Hsiao, B.S., Chu, B., J. Mem. Sci. 278, 261 (2006)CrossRefGoogle Scholar
20.Wang, X., Chen, X., Yoon, K., Fang, D., Hsiao, B.S., Chu, B., Envron. Sci. Technol. 39 (19), 7684 (2005).CrossRefGoogle Scholar
21.Tepper, F., Rivkin, T., Lukasic, G., Filtr. Sep. 39 (6), 16 (2002).CrossRefGoogle Scholar
22.Kenawy, E.R., Abdel-Fattah, T.R., Macromol. Biosci. 2 (6), 261 (2002).3.0.CO;2-2>CrossRefGoogle Scholar
23.Kaur, S., Kotaki, M., Ma, Z., Gopal, R., Ramakrishna, S., Ng, S.C., Int. J. Nanosci. 5, 1 (2006).CrossRefGoogle Scholar
24.Shin, C., Chase, G.G., AIChE J. 50 (2), 343 (2004).CrossRefGoogle Scholar
25.Shin, C., Chase, G.G., Reneker, D.H., AIChE J. 51 (12), 3109 (2005).CrossRefGoogle Scholar
26.Sutherland, K., Filtr. Sep. 42 (7), 34 (2005).CrossRefGoogle Scholar
28.Ramakrishna, S., Fujihara, K., Teo, W.E., Lim, T.C., Ma, Z., An introduction to Electrospinning and Nanofibers (World Scientific, Singapore, Hackensack, NJ, 2005).CrossRefGoogle Scholar
29.Deitzel, J.M., Kleinmeyer, J., Harris, D., Tan, N.C.B, Polymer 42 (1), 261 (2001).CrossRefGoogle Scholar
30.Zhong, X.H., Kim, K.S., Fang, D.F., Ran, S.F., Hsiao, B.S., Chu, B., Polymer 43, 4403 (2002).CrossRefGoogle Scholar
31.Fong, H., Chun, I., Reneker, D.H., Polymer 40, 4585 (1999).CrossRefGoogle Scholar
32.Krishnappa, R.V.N., Desai, K., Sung, C.M., J. Mater. Sci. 38, 2357 (2003).CrossRefGoogle Scholar
33.Demir, M.M., Yilgor, I., Yilgor, E., Erman, B., Polymer 43, 3303 (2002).CrossRefGoogle Scholar
34.Fennessey, S.F., Farris, R.J., Polymer 45, 4217 (2004).CrossRefGoogle Scholar
35.Khil, M.S., Bhattarai, S.R., Kim, H.Y., Kim, S.Z., Lee, K.H., J. Biomed. Mater. Res. Part B Appl. Biomater. 72, 117 (2005).CrossRefGoogle Scholar
36.Reneker, D.H., Chun, I., Nanotechnology 7, 216 (1996).CrossRefGoogle Scholar
37.Dalton, P.D., Klee, D., Moller, M., Polym. Commun. 46, 611 (2005).CrossRefGoogle Scholar
38.Bognitzki, M., Czado, W., Frese, T., Schaper, A., Hellwig, M., Steinhart, M., Geiner, A., Wendorff, J.H., Adv. Mater. 13, 70 (2001).3.0.CO;2-H>CrossRefGoogle Scholar
39.Megelski, S., Stephens, J.S., Chase, D.B., Rabolt, J.F., Macromolecules 35, 8456 (2002).CrossRefGoogle Scholar
40.Casper, C.L., Stephens, J.S., Tassi, N.G., Chase, D.B., Rabolt, J.F., Macromolecules 37, 573 (2004).CrossRefGoogle Scholar
41.Bognitzki, M., Hou, H., Ishaque, M., Frese, T., Hellwig, M., Schwarte, C., Schaper, A., Wendorff, J.H., Adv. Mater. 13, 70 (2001).3.0.CO;2-H>CrossRefGoogle Scholar
42.Hou, H.Q., Jun, Z., Reuning, A., Schaper, A., Wendorff, J.H., Greiner, A., Macromolecules 35, 2429 (2002).CrossRefGoogle Scholar
43.Li, D., Xia, Y., Nano. Lett. 4, 933 (2004).CrossRefGoogle Scholar
44.Li, D.O., McCann, J.T.G., Xia, Y., Nano. Lett. 5 (5), 913 (2005).CrossRefGoogle Scholar
45.Huang, L., McMillan, R.A., Apkarian, R.P., Poudehim, B., Conticello, V.P., Chaikof, E.L., Macromolecules 33 (8), 2989 (2000).CrossRefGoogle Scholar
46.Koombhongse, S., Liu, W., Reneker, D.H., J. Polym. Sci., Polym. Phys. 39, 2598 (2001).CrossRefGoogle Scholar
47.Kessick, R., Tepper, G., Appl. Phys. Lett. 84 (23), 4807 (2004).CrossRefGoogle Scholar