Hostname: page-component-7d684dbfc8-csfzr Total loading time: 0 Render date: 2023-09-23T19:20:25.067Z Has data issue: false Feature Flags: { "corePageComponentGetUserInfoFromSharedSession": true, "coreDisableEcommerce": false, "coreDisableSocialShare": false, "coreDisableEcommerceForArticlePurchase": false, "coreDisableEcommerceForBookPurchase": false, "coreDisableEcommerceForElementPurchase": false, "coreUseNewShare": true, "useRatesEcommerce": true } hasContentIssue false

Nanomaterials under stress: A new opportunity for nanomaterials synthesis and engineering

Published online by Cambridge University Press:  09 November 2015

Feng Bai
Henan University, China;
Kaifu Bian
Sandia National Laboratories, USA;
Binsong Li
Sandia National Laboratories, USA;
Huimeng Wu
Olympus Scientific Solution Americas, USA;
Leanne J. Alarid
Sandia National Laboratories, USA;
Hattie C. Schunk
Sandia National Laboratories, USA;
Paul G. Clem
Sandia National Laboratories, USA;
Hongyou Fan
Sandia National Laboratories and The University of New Mexico, USA;
Get access


Precise control of structural parameters through nanoscale engineering to continuously tailor optical and electronic properties of functional nanomaterials remains an outstanding challenge. Previous work focused largely on chemical or physical interactions that occur under ambient pressures. In this article, we introduce a new pressure-directed assembly and fabrication method that uses a mechanical compressive force applied to nanoparticles (NPs) to induce structural phase transitions and consolidate new nanomaterials with precisely controlled structures and tunable properties. By manipulating NP coupling through external pressure instead of through chemistry, a reversible change in assembly structure and properties can be demonstrated. In addition, over a certain threshold, the external pressure forces these NPs into contact, allowing the formation and consolidation of one- to three-dimensional nanostructures. Through stress-induced NP assembly, unusual materials engineering and synthesis, in which morphology and architecture can be readily tuned to produce desired optical and electrical properties, appear feasible.

Research Article
Copyright © Materials Research Society 2015 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)


DeVries, G.A., Brunnbauer, M., Hu, Y., Jackson, A.M., Long, B., Neltner, B.T., Uzun, O., Wunsch, B.H., Stellacci, F., Science 315, 358 (2007).CrossRef
Sun, S.H., Murray, C.B., Weller, D., Folks, L., Moser, A., Science 287, 1989 (2000).CrossRef
Murray, C.B., Kagan, C.R., Bawendi, M.G., Science 270, 1335 (1995).CrossRef
Park, S.Y., Lytton-Jean, A.K.R., Lee, B., Weigand, S., Schatz, G.C., Mirkin, C.A., Nature 451, 553 (2008).CrossRef
Fan, H., Yang, K., Boye, D.M., Sigmon, T., Malloy, K.J., Xu, H., Lopez, G.P., Brinker, C.J., Science 304, 567 (2004).CrossRef
Alivisatos, A.P., Science 271, 933 (1996).CrossRef
Zeng, H., Li, J., Liu, J.P., Wang, Z.L., Sun, S., Nature 420, 395 (2002).CrossRef
Collier, C.P., Saykally, R.J., Shiang, J.J., Henrichs, S.E., Heath, J.R., Science 277, 1978 (1997).CrossRef
Tang, Z., Kotov, N.A., Giersig, M., Science 297, 237 (2002).CrossRef
Sung, K.-M., Mosley, D.W., Peelle, B.R., Zhang, S., Jacobson, J.M., J. Am. Chem. Soc. 126, 5064 (2004).CrossRef
Worden, J.G., Shaffer, A.W., Huo, Q., Chem. Commun. 5, 518 (2004) doi: 10.1039/B312819A.CrossRef
Yan, H., Park, S.H., Finkelstein, G., Reif, J.H., LaBean, T.H., Science 301, 1882 (2003).CrossRef
Sharma, J., Chhabra, R., Cheng, A., Brownell, J., Liu, Y., Yan, H., Science 323, 112 (2009).CrossRef
Wang, H., Brandl, D.W., Nordlander, P., Halas, N.J., Acc. Chem. Res. 40, 53 (2007).CrossRef
Ozbay, E., Science 311, 189 (2006).CrossRef
Lin, M.-H., Chen, H.-Y., Gwo, S., J. Am. Chem. Soc. 132, 11259 (2010).CrossRef
Choi, C.L., Alivisatos, A.P., Annu. Rev. Phys. Chem. 61, 369 (2010).CrossRef
Valentine, J., Zhang, S., Zentgraf, T., Ulin-Avila, E., Genov, D.A., Bartal, G., Zhang, X., Nature 455, 376 (2008).CrossRef
Liu, N., Guo, H., Fu, L., Kaiser, S., Schweizer, H., Giessen, H., Nat. Mater. 7, 31 (2008).CrossRef
Atwater, H.A., Polman, A., Nat. Mater. 9, 205 (2010).CrossRef
Verellen, N., Sonnefraud, Y., Sobhani, H., Hao, F., Moshchalkov, V.V., Dorpe, P.V., Nordlander, P., Maier, S.A., Nano Lett. 9, 1663 (2009).CrossRef
Jain, P.K., El-Sayed, M.A., J. Phys. Chem. C 112, 4954 (2008).CrossRef
Hu, M., Chen, J., Li, Z.Y., Au, L., Hartland, G.V., Li, X., Marquez, M., Xia, Y., Chem. Soc. Rev. 35 (11), 1084 (2006).CrossRef
Burda, C., Chen, X., Narayanan, R., El-Sayed, M.A., Chem. Rev. 105, 1025 (2005).CrossRef
Fan, H., Chen, Z., Brinker, C.J., Clawson, J., Alam, T., J. Am. Chem. Soc. 127, 13746 (2005).CrossRef
Fan, H., Leve, E., Gabaldon, J., Wright, A., Haddad, R., Brinker, C., Adv. Mater. 17, 2587 (2005).CrossRef
Fan, H., Lopez, G.P., Langmuir 13, 119 (1997).CrossRef
Fan, H., Wright, A., Gabaldon, J., Rodriguez, A., Brinker, C., Jiang, Y.B., Adv. Funct. Mater. 16, 891 (2006).CrossRef
Fan, H.Y., Gabaldon, J., Brinker, C.J., Jiang, Y.B., Chem. Commun. 22, 2323 (2006).CrossRef
Dunphy, D., Fan, H., Li, X., Wang, J., Brinker, C.J., Langmuir 24, 10575 (2008).CrossRef
Wright, A., Gabaldon, J., Burckel, D.B., Jiang, Y.-B., Tian, Z.R., Liu, J., Brinker, C.J., Fan, H., Chem. Mater. 18, 3034 (2006).CrossRef
Tao, A., Sinsermsuksakul, P., Yang, P., Nat. Nanotechnol. 2, 435 (2007).CrossRef
Heath, J.R., Knobler, C.M., Leff, D.V., J. Phys. Chem. B 101, 189 (1997).CrossRef
Jain, P.K., Huang, W., El-Sayed, M.A., Nano Lett. 7, 2080 (2007).CrossRef
Wu, H., Wang, Z., Fan, H., J. Am. Chem. Soc. 136, 7634 (2014).CrossRef
Wu, H., Bai, F., Sun, Z., Haddad, R.E., Boye, D.M., Wang, Z., Huang, J.Y., Fan, H., J. Am. Chem. Soc. 132, 12826 (2010).CrossRef
Wu, H., Bai, F., Sun, Z., Haddad, R.E., Boye, D.M., Wang, Z., Fan, H., Angew. Chem. Int. Ed. 122, 8609 (2010).CrossRef
Li, W., Fan, H., Li, J., Nano Lett. 14, 4951 (2014).CrossRef
Li, B., Wen, X., Li, R., Wang, Z., Clem, P.G., Fan, H., Nat. Commun. 5, 4179 (2014) doi: 10.1038/ncomms5179.CrossRef
Wang, Z., Schliehe, C., Wang, T., Nagaoka, Y., Cao, Y.C., Bassett, W.A., Wu, H., Fan, H., Weller, H., J. Am. Chem. Soc. 133, 14484 (2011).CrossRef
Mao, H.K., Bell, P.M., Science 200 1145 (1978).CrossRef
Jacobs, K., Alivisatos, A.P., Rev. Mineral. Geochem. 44, 59 (2001).CrossRef
Tolbert, S., Alivisatos, A.P., Annu. Rev. Phys. Chem. 46, 595 (1995).CrossRef
Grünwald, M., Lutker, K., Alivisatos, A.P., Rabani, E., Geissler, P.L., Nano Lett. 13, 1367 (2013).CrossRef
Zheng, N., Fan, J., Stucky, G.D., J. Am. Chem. Soc. 128, 6550 (2006).CrossRef
Beckman, R., Johnston-Halperin, E., Luo, Y., Green, J.E., Heath, J.R., Science 310, 465 (2005).CrossRef
Huo, Z., Tsung, C.-K., Huang, W., Zhang, X., Yang, P., Nano Lett. 8, 2041 (2008).CrossRef
Lu, X., Yavuz, M.S., Tuan, H.-Y., Korgel, B.A., Xia, Y., J. Am. Chem. Soc. 130, 8900 (2008).CrossRef
Wang, C., Hu, Y., Lieber, C.M., Sun, S., J. Am. Chem. Soc. 130, 8902 (2008).CrossRef
Worden, J.G., Dai, Q., Huo, Q., Chem. Commun. 14, 1536 (2006) doi: 10.1039/B600641H.CrossRef
Lu, Y., Liu, G.L., Lee, L.P., Nano Lett. 5, 5 (2004).CrossRef
Xia, Y., Xiong, Y., Lim, B., Skrabalak, S.E., Angew. Chem. Int. Ed. 48, 60 (2009).CrossRef
Sun, S., Adv. Mater. 18, 393 (2006).CrossRef
Quake, S.R., Scherer, A., Science 290, 1536 (2000).CrossRef