Skip to main content Accessibility help
×
Home
Hostname: page-component-cf9d5c678-j7tnp Total loading time: 0.403 Render date: 2021-08-04T14:06:55.043Z Has data issue: true Feature Flags: { "shouldUseShareProductTool": true, "shouldUseHypothesis": true, "isUnsiloEnabled": true, "metricsAbstractViews": false, "figures": true, "newCiteModal": false, "newCitedByModal": true, "newEcommerce": true, "newUsageEvents": true }

Article contents

Nanocomposites for thermoelectrics and thermal engineering

Published online by Cambridge University Press:  04 September 2015

Bolin Liao
Affiliation:
Department of Mechanical Engineering, Massachusetts Institute of Technology, USA; bolin@mit.edu
Gang Chen
Affiliation:
Department of Mechanical Engineering, Massachusetts Institute of Technology, USA; gchen2@mit.edu
Corresponding
E-mail address:
Get access

Abstract

The making of composites has served as a working principle of achieving material properties beyond those of their homogeneous counterparts. The classical effective-medium theory models the constituent phases with local properties drawn from the corresponding bulk values, whose applicability becomes questionable when the characteristic size of individual domains in a composite shrinks to nanometer scale, and the interactions between domains induced by interfacial and size effects become important or even dominant. These unique features of nanocomposites have enabled engineering of extraordinary thermoelectric materials with synergistic effects among their constituents in recent years. For other applications requiring high thermal conductivity, however, interfacial and size effects on thermal transport in nanocomposites are not favorable, although certain practical applications often call for the composite approach. Therefore, understanding nanoscale transport in nanocomposites can help determine appropriate strategies for enhancing the thermal performance for different applications. We review the emerging principles of heat and charge transport in nanocomposites and provide working examples from both thermoelectrics and general thermal engineering.

Type
Research Article
Copyright
Copyright © Materials Research Society 2015 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Chu, S., Majumdar, A., Nature 488, 294 (2012).CrossRef
Tritt, T.M., Subramanian, M.A., MRS Bull. 31, 188 (2006).CrossRef
Tritt, T.M., Böttner, H., Chen, L., MRS Bull. 33, 366 (2008).CrossRef
Bell, L.E., Science 321, 1457 (2008).CrossRef
Zebarjadi, M., Esfarjani, K., Dresselhaus, M.S., Ren, Z.F., Chen, G., Energy Environ. Sci. 5, 5147 (2012).CrossRef
Dresselhaus, M.S., Chen, G., Tang, M.Y., Yang, R.G., Lee, H., Wang, D.Z., Ren, Z.F., Fleurial, J.-P., Gogna, P., Adv. Mater. 19, 1043 (2007).CrossRef
Goldsmid, H.J., Introduction to Thermoelectricity (Springer, New York, 2010).CrossRefGoogle Scholar
Rayleigh, Lord, Philos. Mag. 34, 481 (1892).CrossRef
Maxwell, J.C., A Treatise on Electricity and Magnetism (Clarendon, Oxford, UK, 1873), vol. 1.Google Scholar
Garnett, J.C. Maxwell, Philos. Trans. R. Soc. Lond. Math. Phys. Eng. Sci. 203, 385 (1904).CrossRef
Datta, S., Electronic Transport in Mesoscopic Systems (Cambridge University Press, Cambridge, UK, 1997).Google Scholar
Chen, G., Nanoscale Energy Transport and Conversion: A Parallel Treatment of Electrons, Molecules, Phonons, and Photons (Oxford University Press, Oxford; New York, 2005).Google Scholar
Nan, C.-W., Birringer, R., Clarke, D.R., Gleiter, H., J. Appl. Phys. 81, 6692 (1997).CrossRef
Herring, C., J. Appl. Phys. 31, 1939 (1960).CrossRef
Bergman, D.J., Levy, O., J. Appl. Phys. 70, 6821 (1991).CrossRef
Fu, D., Levander, A.X., Zhang, R., Ager, J.W., Wu, J., Phys. Rev. B 84, 045205 (2011).CrossRef
Poudel, B., Hao, Q., Ma, Y., Lan, Y., Minnich, A., Yu, B., Yan, X., Wang, D., Muto, A., Vashaee, D., Chen, X., Liu, J., Dresselhaus, M.S., Chen, G., Ren, Z., Science 320, 634 (2008).CrossRef
Pei, Y., Shi, X., LaLonde, A., Wang, H., Chen, L., Snyder, G.J., Nature 473, 66 (2011).CrossRef
Biswas, K., He, J., Blum, I.D., Wu, C.-I., Hogan, T.P., Seidman, D.N., Dravid, V.P., Kanatzidis, M.G., Nature 489, 414 (2012).CrossRef
Heremans, J.P., Dresselhaus, M.S., Bell, L.E., Morelli, D.T., Nat. Nanotechnol. 8, 471 (2013).CrossRef
Wu, H.J., Zhao, L.-D., Zheng, F.S., Wu, D., Pei, Y.L., Tong, X., Kanatzidis, M.G., He, J.Q., Nat. Commun. 5, 5515 (2014).
Daembkes, H., Ed., Modulation-Doped Field-Effect Transistors: Principles, Design and Technology (IEEE Press, New York, 1990).Google Scholar
Zebarjadi, M., Joshi, G., Zhu, G., Yu, B., Minnich, A., Lan, Y., Wang, X., Dresselhaus, M., Ren, Z., Chen, G., Nano Lett. 11, 2225 (2011).CrossRef
Yu, B., Zebarjadi, M., Wang, H., Lukas, K., Wang, H., Wang, D., Opeil, C., Dresselhaus, M., Chen, G., Ren, Z., Nano Lett. 12, 2077 (2012).CrossRef
Mahan, G.D., Sofo, J.O., Proc. Natl. Acad. Sci. U.S.A. 93, 7436 (1996).CrossRef
Lundstrom, M., Fundamentals of Carrier Transport (Cambridge University Press, New York, 2009).Google Scholar
Bohren, C.F., Huffman, D.R., Absorption and Scattering of Light by Small Particles (Wiley-VCH, New York, 1998).CrossRefGoogle Scholar
Schiff, L.I., Quantum Mechanics (McGraw-Hill College, New York, 1968).Google ScholarPubMed
Zebarjadi, M., Esfarjani, K., Shakouri, A., Bahk, J.-H., Bian, Z., Zeng, G., Bowers, J., Lu, H., Zide, J., Gossard, A., Appl. Phys. Lett. 94, 202105 (2009).CrossRef
Bahk, J.-H., Santhanam, P., Bian, Z., Ram, R., Shakouri, A., Appl. Phys. Lett. 100, 012102 (2012).CrossRef
Liao, B., Zebarjadi, M., Esfarjani, K., Chen, G., Phys. Rev. Lett. 109, 126806 (2012).CrossRef
Zebarjadi, M., Liao, B., Esfarjani, K., Dresselhaus, M., Chen, G., Adv. Mater. 25, 1577 (2013).CrossRef
Shen, W., Tian, T., Liao, B., Zebarjadi, M., Phys. Rev. B 90, 075301 (2014).CrossRef
Liao, B., Zebarjadi, M., Esfarjani, K., Chen, G., Phys. Rev. B. 88, 155432 (2013).CrossRef
Hicks, L.D., Dresselhaus, M.S., Phys. Rev. B 47, 12727 (1993).CrossRef
Hicks, L.D., Dresselhaus, M.S., Phys. Rev. B 47, 16631 (1993).CrossRef
Harman, T.C., Taylor, P.J., Walsh, M.P., LaForge, B.E., Science 297, 2229 (2002).CrossRef
Hicks, L.D., Harman, T.C., Sun, X., Dresselhaus, M.S., Phys. Rev. B 53, R10493 (1996).CrossRef
Venkatasubramanian, R., Siivola, E., Colpitts, T., O’Quinn, B., Nature 413, 597 (2001).CrossRef
Chowdhury, I., Prasher, R., Lofgreen, K., Chrysler, G., Narasimhan, S., Mahajan, R., Koester, D., Alley, R., Venkatasubramanian, R., Nat. Nanotechnol. 4, 235 (2009).CrossRef
Boukai, A.I., Bunimovich, Y., Tahir-Kheli, J., Yu, J.-K., Goddard Iii, W.A., Heath, J.R., Nature 451, 168 (2008).CrossRef
Ohta, H., Kim, S., Mune, Y., Mizoguchi, T., Nomura, K., Ohta, S., Nomura, T., Nakanishi, Y., Ikuhara, Y., Hirano, M., Hosono, H., Koumoto, K., Nat. Mater. 6, 129 (2007).CrossRef
Casimir, H.B.G., Physica 5, 495 (1938).CrossRef
Chen, G., Tien, C.L., Wu, X., Smith, J.S., J. Heat Transf. 116, 325 (1994).CrossRef
Lee, S.-M., Cahill, D.G., Venkatasubramanian, R., Appl. Phys. Lett. 70, 2957 (1997).CrossRef
Borca-Tasciuc, T., Liu, W., Liu, J., Zeng, T., Song, D.W., Moore, C.D., Chen, G., Wang, K.L., Goorsky, M.S., Radetic, T., Gronsky, R., Koga, T., Dresselhaus, M.S., Superlattices Microstruct. 28, 199 (2000).CrossRef
Capinski, W.S., Maris, H.J., Ruf, T., Cardona, M., Ploog, K., Katzer, D.S., Phys. Rev. B 59, 8105 (1999).CrossRef
Chen, G., J. Heat Transf. 119, 220 (1997).CrossRef
Chen, G., Phys. Rev. B 57, 14958 (1998).CrossRef
Garg, J., Chen, G., Phys. Rev. B 87, 140302 (2013).CrossRef
Minnich, A.J., Dresselhaus, M.S., Ren, Z.F., Chen, G., Energy Environ. Sci. 2, 466 (2009).CrossRef
Lan, Y., Minnich, A.J., Chen, G., Ren, Z., Adv. Funct. Mater. 20, 357 (2010).CrossRef
Liu, W., Yan, X., Chen, G., Ren, Z., Nano Energy 1, 42 (2012).CrossRef
Kim, S.I., Lee, K.H., Mun, H.A., Kim, H.S., Hwang, S.W., Roh, J.W., Yang, D.J., Shin, W.H., Li, X.S., Lee, Y.H., Snyder, G.J., Kim, S.W., Science 348, 109 (2015).CrossRef
Hsu, K.F., Loo, S., Guo, F., Chen, W., Dyck, J.S., Uher, C., Hogan, T., Polychroniadis, E.K., Kanatzidis, M.G., Science 303, 818 (2004).CrossRef
Zhou, M., Li, J.-F., Kita, T., J. Am. Chem. Soc. 130, 4527 (2008).CrossRef
Li, Z.-Y., Li, J.-F., Adv. Energy Mater. 4, 1300937 (2014).CrossRef
Quarez, E., Hsu, K.-F., Pcionek, R., Frangis, N., Polychroniadis, E.K., Kanatzidis, M.G., J. Am. Chem. Soc. 127, 9177 (2005).CrossRef
Biswas, K., He, J., Zhang, Q., Wang, G., Uher, C., Dravid, V.P., Kanatzidis, M.G., Nat. Chem. 3, 160 (2011).CrossRef
Wang, Y., Lee, K.H., Ohta, H., Koumoto, K., J. Appl. Phys. 105, 103701 (2009).CrossRef
Wan, C., Gu, X., Dang, F., Itoh, T., Wang, Y., Sasaki, H., Kondo, M., Koga, K., Yabuki, K., Snyder, J., Yang, R., Kuomoto, K., Nat. Mater. 14, 622 (2015).CrossRef
Broido, D.A., Malorny, M., Birner, G., Mingo, N., Stewart, D.A., Appl. Phys. Lett. 91, 231922 (2007).CrossRef
Esfarjani, K., Chen, G., Stokes, H.T., Phys. Rev. B 84, 085204 (2011).CrossRef
Tian, Z., Garg, J., Esfarjani, K., Shiga, T., Shiomi, J., Chen, G., Phys. Rev. B 85, 184303 (2012).CrossRef
Luo, T., Garg, J., Shiomi, J., Esfarjani, K., Chen, G., Europhys. Lett. 101, 16001 (2013).CrossRef
Liao, B., Lee, S., Esfarjani, K., Chen, G., Phys. Rev. B 89, 035108 (2014).CrossRef
Lee, S., Esfarjani, K., Mendoza, J., Dresselhaus, M.S., Chen, G., Phys. Rev. B 89, 085206 (2014).CrossRef
Tian, Z., Lee, S., Chen, G., J. Heat Transf. 135, 061605 (2013).CrossRef
Qiu, B., Tian, Z., Vallabhaneni, A., Liao, B., Mendoza, J.M., Restrepo, O.D., Ruan, X., Chen, G., Europhys. Lett. 109, 57006 (2015).CrossRef
Liao, B., Zhou, J., Qiu, B., Dresselhaus, M.S., Chen, G., Phys. Rev. B 91, 235419 (2015).CrossRef
Slack, G.A., in Solid State Physics, Ehrenreich, H., Seitz, F., Turnbull, D., Eds. (Academic Press, New York, 1979), vol. 34, pp. 171.Google Scholar
Cahill, D.G., Pohl, R.O., Annu. Rev. Phys. Chem. 39, 93 (1988).CrossRef
Chen, G., in Semiconductors and Semimetals, Tritt, T.M., Ed. (Elsevier, 2001), vol. 71 of Recent Trends in Thermoelectric Materials Research III, pp. 203259.Google Scholar
Chiritescu, C., Cahill, D.G., Nguyen, N., Johnson, D., Bodapati, A., Keblinski, P., Zschack, P., Science 315, 351 (2007).CrossRef
Ma, J., Parajuli, B.R., Ghossoub, M.G., Mihi, A., Sadhu, J., Braun, P.V., Sinha, S., Nano Lett. 13, 618 (2013).CrossRef
Zen, N., Puurtinen, T.A., Isotalo, T.J., Chaudhuri, S., Maasilta, I.J., Nat. Commun. 5, 4435 (2014).CrossRef
Yu, J.-K., Mitrovic, S., Tham, D., Varghese, J., Heath, J.R., Nat. Nanotechnol. 5, 718 (2010).CrossRef
Hopkins, P.E., Reinke, C.M., Su, M.F., Olsson, R.H., Shaner, E.A., Leseman, Z.C., Serrano, J.R., Phinney, L.M., El-Kady, I., Nano Lett. 11, 107 (2011).CrossRef
Yang, L., Yang, N., Li, B., Nano Lett. 14, 1734 (2014).CrossRef
Li, N., Ren, J., Wang, L., Zhang, G., Hänggi, P., Li, B., Rev. Mod. Phys. 84, 1045 (2012).CrossRef
Maldovan, M., Nature 503, 209 (2013).CrossRef
Gorishnyy, T., Ullal, C.K., Maldovan, M., Fytas, G., Thomas, E.L., Phys. Rev. Lett. 94, 115501 (2005).CrossRef
Cheng, W., Wang, J., Jonas, U., Fytas, G., Stefanou, N., Nat. Mater. 5, 830 (2006).CrossRef
Zhu, G., Swinteck, N.Z., Wu, S., Zhang, J.S., Pan, H., Bass, J.D., Deymier, P.A., Banerjee, D., Yano, K., Phys. Rev. B 88, 144307 (2013).CrossRef
Luckyanova, M.N., Garg, J., Esfarjani, K., Jandl, A., Bulsara, M.T., Schmidt, A.J., Minnich, A.J., Chen, S., Dresselhaus, M.S., Ren, Z., Fitzgerald, E.A., Chen, G., Science 338, 936 (2012).CrossRef
Tian, Z., Esfarjani, K., Chen, G., Phys. Rev. B 89, 235307 (2014).CrossRef
Dames, C., Chen, G., J. Appl. Phys. 95, 682 (2004).CrossRef
Chalopin, Y., Esfarjani, K., Henry, A., Volz, S., Chen, G., Phys. Rev. B 85, 195302 (2012).CrossRef
Sheng, P., Introduction to Wave Scattering, Localization, and Mesoscopic Phenomena (Academic Press, San Diego, 1995).Google Scholar
Prasher, R., Proc. IEEE 94, 1571 (2006).CrossRef
Wong, C.P., Bollampally, R.S., J. Appl. Polym. Sci. 74, 3396 (1999).3.0.CO;2-3>CrossRef
Mamunya, Y.P., Davydenko, V.V., Pissis, P., Lebedev, E.V., Eur. Polym. J. 38, 1887 (2002).CrossRef
Han, Z., Fina, A., Prog. Polym. Sci. 36, 914 (2011).CrossRef
Shen, S., Henry, A., Tong, J., Zheng, R., Chen, G., Nat. Nanotechnol. 5, 251 (2010).CrossRef
Singh, V., Bougher, T.L., Weathers, A., Cai, Y., Bi, K., Pettes, M.T., McMenamin, S.A., Lv, W., Resler, D.P., Gattuso, T.R., Altman, D.H., Sandhage, K.H., Shi, L., Henry, A., Cola, B.A., Nat. Nanotechnol. 9, 384 (2014).CrossRef
Kim, G.-H., Lee, D., Shanker, A., Shao, L., Kwon, M.S., Gidley, D., Kim, J., Pipe, K.P., Nat. Mater. 14, 295 (2015).CrossRef
Kirkpatrick, S., Rev. Mod. Phys. 45, 574 (1973).CrossRef
Wang, J.J., Zheng, R.T., Gao, J.W., Chen, G., Nano Today 7, 124 (2012).CrossRef
Zheng, R., Gao, J., Wang, J., Feng, S.-P., Ohtani, H., Wang, J., Chen, G., Nano Lett. 12, 188 (2012).CrossRef
Gao, J.W., Zheng, R.T., Ohtani, H., Zhu, D.S., Chen, G., Nano Lett. 9, 4128 (2009).CrossRef
Lu, P.J., Zaccarelli, E., Ciulla, F., Schofield, A.B., Sciortino, F., Weitz, D.A., Nature 453, 499 (2008).CrossRef

Send article to Kindle

To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Nanocomposites for thermoelectrics and thermal engineering
Available formats
×

Send article to Dropbox

To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

Nanocomposites for thermoelectrics and thermal engineering
Available formats
×

Send article to Google Drive

To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

Nanocomposites for thermoelectrics and thermal engineering
Available formats
×
×

Reply to: Submit a response

Please enter your response.

Your details

Please enter a valid email address.

Conflicting interests

Do you have any conflicting interests? *