Skip to main content Accessibility help
×
Home
Hostname: page-component-cf9d5c678-cnwzk Total loading time: 0.437 Render date: 2021-07-30T02:42:14.066Z Has data issue: true Feature Flags: { "shouldUseShareProductTool": true, "shouldUseHypothesis": true, "isUnsiloEnabled": true, "metricsAbstractViews": false, "figures": true, "newCiteModal": false, "newCitedByModal": true, "newEcommerce": true, "newUsageEvents": true }

Article contents

Magnetic Tape: The Challenge of Reaching Hard-Disk-Drive Data Densities on Flexible Media

Published online by Cambridge University Press:  31 January 2011

Get access

Abstract

By the end of 2006, the areal density of magnetic recording on tape will approach that seen in hard disk drives of the early to mid-1990s.These operating conditions are reviewed in relation to the operating conditions deemed necessary for the future of magnetic data storage on tape.What results is a clear set of tasks, encompassing both materials and systems architecture issues, to achieve very high-density data storage on magnetic tape, leading to 10 Tbyte tape cartridge capacities and higher.The key to achieving on tape the areal densities of tens to hundreds of Gbit in.2, common in hard disk drives (HDDs), lies primarily in the properties of the medium itself.As for volumetric density of the storage entity, HDDs and tape cartridges are roughly equivalent.The mechanical dimensional uncertainties that accompany the use of flexible, as opposed to rigid, media means that both the mechanical and magnetic properties of materials play a key role in the future of tape.The need for new architectures to overcome the track placement problem that results from increasing track density on flexible media are reviewed, as well as the “particles in a binder” concept that has served so well as the physical basis of tape media over the past 50 years.

Type
Research Article
Copyright
Copyright © Materials Research Society 2006

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1Childers, E.R.Imaino, W.Eaton, J.Jaquette, G.Koeppe, P. and Hellman, D.IBM J.Res. & Dev. 47 (4) (2003) p.471.CrossRefGoogle Scholar
2Charap, S. H.Lu, P.-L. and He, Y.IEEE Trans. Magn. 33 (1997) p.978.CrossRefGoogle Scholar
3Weller, D. and Moser, W.IEEE Trans. Magn. 35 (6) (1999) p.4423.CrossRefGoogle Scholar
4Richard Dee, H. in Proc.Tenth NASAGoddard Space Flight Center Conf. on Mass Storage Systems and Technologies, College Park, Md., NASA/CP-2002-210000 (April 15-18, 2002) p. 109.Google Scholar
5Tsang, C.Chen, M.-M, Yogi, T. and Ju, K.IEEE Trans. Magn. 26 (5) (1990) p.1689.CrossRefGoogle Scholar
6Tsang, Ching, Santini, H.McCown, D.Lo, J., and Lee, R.IEEE Trans. Magn. 32 (1) (1996) p.7.CrossRefGoogle Scholar
7Kanai, H.Okamoto, J.Ohtsuka, Y.Sugawara, T., Koshikawa, J.Toda, J.Uematsu, Y.Shinohara, M. and Mizoshita, Y.IEEE Trans. Magn. 32 (5) (1996) p.3914.Google Scholar
8Tsang, C.Pinarbasi, M.Santini, H.Marinero, E.Arnett, P.Olson, R.Hsiao, R.Williams, M., Payne, R.Wang, R.Moore, J.Gurney, B.Lin, T. and Fontana, R.IEEE Trans. Magn. 35 (2) (1999) p.689.CrossRefGoogle Scholar
9Liu, F.H.Stoev, K.Shi, X.Tong, H.C.Chien, C.Dong, Z.W.Yan, X.Gibbons, M.Funada, S.Liu, Y.Prabhu, P.Dey, S.Schultz, M.Mahotra, S.Lal, B.Kimmal, J., Russak, M. and Kern, P.IEEE Trans. Magn. 36 (5) (2000) p.2140.CrossRefGoogle Scholar
10Stoev, K.Liu, F.Shi, X.Tong, H.Chen, Y.Chien, C.Dong, Z.W.Gibbons, M.Funada, S.Prabhu, P., Nguyen, H.Wachenschwanz, D.Mei, L.Schultz, M.Malhotra, S.Lal, B.Kimmal, J.Russak, M.Talalai, A. and Varlahanov, A.IEEE Trans. Magn. 37 (4) (2000) p.1264.CrossRefGoogle Scholar
11Zhang, Z.Feng, Y. Chang, Clinton, T.Badran, G.Yeh, N.H.Tarnopolsky, G.Girt, E.Munteanu, M., Harkness, S.Richter, H.Nolan, T.Ranjan, R.Hwang, S.Rauch, G.Ghaly, M.Larson, D., Singleton, E.Vas'ko, V., Ho, J.Stageberg, F.Kong, V.Duxstad, K. and Slade, S.IEEE Trans. Magn. 38 (5) (2002) p.1861.CrossRefGoogle Scholar
12Williams, M.L. and Comstock, R.L. in Proc. 17th Annu. AIP Conf. (1971) p.738.Google Scholar
13Mallinson, John, Foundations of Magnetic Recording, 2nd Ed. (Academic Press, New York, 1993) p.116.Google Scholar
14Materials pervasive today are PET (polyethylene teraphthalate) and PEN (polyethylene napthalate) with ARAMID (aromatic polyamide) used in helical-scan drives.Google Scholar
15Sharrock, M.P.IEEE Trans. Magn. 36 (5) (2000) p.2420.CrossRefGoogle Scholar
16Sasaki, Y.Usuki, N.Matsuo, K. and Kishimoto, M.IEEE Trans. Magn. 41 (10) (2005) p.3241.CrossRefGoogle Scholar
17Bai, J. and Wang, Jian-Ping, Dig. IEEE Int. Conf. Magnetics 2005 (4-8 April, 2005) p.655.Google Scholar
18Dee, R.H.IEEE Trans. Magn. 38 (5) (2002) p.1922.CrossRefGoogle Scholar
19Tetsukawa, H.Kondo, M.Soda, Y.Ozue, T.Motohashi, K.Onodera, S. and Kawana, T.IEEE Trans. Magn. 38 (5) (2002) p.1910.CrossRefGoogle Scholar
20Sugawara, T.Yamagishi, M.Mutoh, H.Shimoda, K. and Mizoshita, Y.IEEE Trans. Magn. 29 (6) (1993) p.4021.CrossRefGoogle Scholar
21Kobayashi, M.Ohta, H. and Murata, A.IEEE Trans. Magn. 27 (6) (1991) p.4526.CrossRefGoogle Scholar
22Coutellier, J.Magna, H. and Pirot, X.IEEE Trans. Magn. 28 (5) (1992) p.2653.CrossRefGoogle Scholar
23Maillot, C. and Maurice, F.IEEE Trans. Magn. 28 (5) (1992) p.2656.CrossRefGoogle Scholar

Send article to Kindle

To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Magnetic Tape: The Challenge of Reaching Hard-Disk-Drive Data Densities on Flexible Media
Available formats
×

Send article to Dropbox

To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

Magnetic Tape: The Challenge of Reaching Hard-Disk-Drive Data Densities on Flexible Media
Available formats
×

Send article to Google Drive

To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

Magnetic Tape: The Challenge of Reaching Hard-Disk-Drive Data Densities on Flexible Media
Available formats
×
×

Reply to: Submit a response

Please enter your response.

Your details

Please enter a valid email address.

Conflicting interests

Do you have any conflicting interests? *