Hostname: page-component-546b4f848f-zwmfq Total loading time: 0 Render date: 2023-06-01T12:03:34.150Z Has data issue: false Feature Flags: { "useRatesEcommerce": true } hasContentIssue false

Low thermal conductivity oxides

Published online by Cambridge University Press:  09 October 2012

Wei Pan
Affiliation:
State Key Lab of New Ceramics and Fine Processing, Tsinghua University, Beijing, China; panw@mail.tsinghua.edu.cn
Simon R. Phillpot
Affiliation:
Department of Materials Science and Engineering, University of Florida, Gainesville, FL; sphil@mse.ufl.edu
Chunlei Wan
Affiliation:
Graduate School of Engineering, Nagoya University, Nagoya, Japan; chunlei.wan@gmail.com
Aleksandr Chernatynskiy
Affiliation:
Department of Materials Science and Engineering, University of Florida, Gainesville, FL; avtche01@gmail.com
Zhixue Qu
Affiliation:
College of Materials Science and Engineering, Beijing University of Technology, Beijing, China; quzhixue@bjut.edu.cn
Get access

Abstract

Oxides hold great promise as new and improved materials for thermal-barrier coating applications. The rich variety of structures and compositions of the materials in this class, and the ease with which they can be doped, allow the exploration of various mechanisms for lowering thermal conductivity. In this article, we review recent progress in identifying specific oxides with low thermal conductivity from both theoretical and experimental perspectives. We explore the mechanisms of lowering thermal conductivity, such as introducing structural/chemical disorder, increasing material density, increasing the number of atoms in the primitive cell, and exploiting the structural anisotropy. We conclude that further systematic exploration of oxide crystal structures and chemistries are likely to result in even further improved thermal-barrier coatings.

Type
Research Article
Copyright
Copyright © Materials Research Society 2012

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Siegel, R., Spuckler, C.M., Mater. Sci. Eng., A 245, 150 (1998).CrossRef
Stecura, S., “Optimization of the NiCrAI-Y/ZrO2-Y2O3 Thermal Barrier System” (NASA Tech. memo, Cleveland, 1985).
Callaway, J., von Baeyer, H.C., Phys. Rev. 120 (4), 1149 (1960).CrossRef
Schelling, P.K., Phillpot, S.R., J. Am. Ceram. Soc. 84 (12), 2997 (2001).CrossRef
Watanabe, T., Srivilliputhur, S.G., Schelling, P.K., Tulenko, J.S., Sinnott, S.B., Phillpot, S.R., J. Am. Ceram. Soc. 92 (4), 850 (2009).CrossRef
Allen, P.B., Feldman, J.L., Bickham, S.R., Philos. Mag. B 79 (11–12), 1715 (1999).CrossRef
Lughi, V., Clarke, D.R., Surf. Coat. Technol. 200 (5–6), 1287 (2005).CrossRef
Feng, J., Ren, X.R., Wang, X., Zhou, R., Pan, W., Scripta Mater. 66 (1), 41 (2012).CrossRef
Rahaman, M.N., Gross, J.R., Dutton, R.E., Wang, H., Acta Mater. 54 (6), 1615 (2006).CrossRef
Levi, C.G., Curr. Opin. Solid State Mater. Sci. 8 (1), 77 (2004).CrossRef
Raghavan, S., Wang, H., Dinwiddie, R.B., Porter, W.D., Vaβen, R., Stöver, D., Mayo, M.J., J. Am. Ceram. Soc. 87 (3), 431 (2004).CrossRef
Raghavan, S., Wang, H., Porter, W.D., Dinwiddie, R.B., Mayo, M.J., Acta Mater. 49 (1), 169 (2001).CrossRef
Shen, Y., Leckie, R.M., Levi, C.G., Clarke, D.R., Acta Mater. 58 (13), 4424 (2010).CrossRef
Song, X.W., Xie, M., Mu, R., Zhou, F., Jia, G., An, S., Acta Mater. 59 (10), 3895 (2011).CrossRef
Jarligo, M.O., Mack, D.E., Mauer, G., Vaβen, R., Stöver, D., J. Therm. Spray Technol. 19 (1–2), 303 (2010).CrossRef
Vaβen, R., Jarligo, M.O., Steinke, T., Mack, D.E., Stöver, D., Surf. Coat. Technol. 205 (4), 938 (2010).
Zhu, D.M., Miller, R.A., Int. J. Appl. Ceram. Technol. 1 (1), 86 (2004).CrossRef
Vaβen, R., Cao, X.Q., Tietz, F., Basu, D., Stöver, D., J. Am. Ceram. Soc. 83 (8), 2023 (2000).
Wuensch, B.J., Eberman, K.W., J. Miner. 52, 19 (2000).
Schelling, P.K., Phillpot, S.R., Grimes, R.W., Philos. Mag. Lett. 84 (2), 127 (2004).CrossRef
Qu, Z., Wan, C., Pan, W., Acta Mater. 60 (6–7), 2939 (2012).CrossRef
Wu, J., Wei, X.Z., Padture, N.P., Klemens, P.G., Gell, M., Garcia, E., Miranzo, P., Osendi, M.I., J. Am. Ceram. Soc. 85 (12), 3031 (2002).CrossRef
Winter, M.R., Clarke, D.R., J. Am. Ceram. Soc. 90 (2), 533 (2007).CrossRef
Xu, Q., Pan, W., Wang, J., Wan, C., Qi, L., Miao, H., Mori, K., Torigoe, T., J. Am. Ceram. Soc. 89 (1), 340 (2006).CrossRef
Lehmann, H., Pitzer, D., Pracht, G., Vaβen, R., Stöver, D., J. Am. Ceram. Soc. 86 (8), 1338 (2003).CrossRef
Wan, C.L., Qu, Z.X., Du, A., Pan, W., J. Am. Ceram. Soc. 94 (2), 592 (2011).CrossRef
Wan, C.L., Zhang, W., Wang, Y., Qu, Z.X., Du, A., Wu, R., Pan, W., Acta Mater. 58 (18), 6166 (2010).CrossRef
Mitchell, R.H., Perovskites: Modern and Ancient (Almaz Press, Thunder Bay, 2002).Google Scholar
Ma, W., Mack, D.E., Vaβen, R., Stöver, D., J. Am. Ceram. Soc. 91 (8), 2630 (2008).CrossRef
Ma, W., Jarligo, M.O., Pitzer, D., Malzbender, J., Vaβen, R., Stöver, D., J. Therm. Spray Technol. 17 (5–6), 831 (2008).CrossRef
Jarligo, M.O., Mack, D.E., Vaβen, R., Stöver, D., J. Therm. Spray Technol. 18 (2), 187 (2009).CrossRef
Wan, C., Qu, Z., He, Y., Luan, D., Pan, W., Phys. Rev. Lett. 101 (8), 085901 (2008).CrossRef
Wan, C.L., Sparks, T.D., Pan, W., Clarke, D.R., David, R., J. Am. Ceram. Soc. 93 (5), 1457 (2010).CrossRef
Chernatynskiy, A., Grimes, R.W., Zurbuchen, M.A., Clarke, D.R., Phillpot, S.R., Appl. Phys. Lett. 95 (16) (2009).CrossRef
Shen, Y., Clarke, D.R., Fuierer, P.A., Appl. Phys. Lett. 93 (10) (2008).
Guo, H., Zhang, H., Ma, G., Gong, S., Surf. Coat. Technol. 204 (5), 691 (2009).CrossRef
Cao, X.Q., Vaβen, R., Stöver, D., J. Eur. Ceram. Soc. 24 (1), 1 (2004).CrossRef
Du, A.B., Wan, C.L., Qu, Z., Pan, W., J. Am. Ceram. Soc. 92 (11), 2687 (2009).CrossRef
Du, A.B., Wan, C.L., Qu, Z., Wu, R., Pan, W., J. Am. Ceram. Soc. 93 (9), 2822 (2010).CrossRef
Qu, Z.X., Sparks, T.D., Pan, W., Clarke, D.R., Acta Mater. 59 (10), 3841 (2011).CrossRef
Vaβen, R., Kerkhof, G., Stöver, D., Mater. Sci. Eng., A 303 (1–2), 100 (2001).
Sodeoka, S., Suzuki, M., Ueno, K.. Sakuramoto, H., Shibata, T., Ando, M., J. Therm. Spray Technol. 6 (3), 361 (1997).CrossRef
Cao, X.Q., Vaβen, R., Fischer, W., Tietz, F., Jungen, W., Stöve, D., Adv. Mater. 15 (17), 1438 (2003).CrossRef
Qu, Z.X., Wan, C.L., Pan, W., Chem. Mater. 19 (20), 4913 (2007).CrossRef