Skip to main content Accessibility help
×
Home
Hostname: page-component-768dbb666b-qc52z Total loading time: 0.365 Render date: 2023-02-06T14:16:27.669Z Has data issue: true Feature Flags: { "useRatesEcommerce": false } hasContentIssue true

Article contents

Intrinsic charge transport in single crystals of organic molecular semiconductors: A theoretical perspective

Published online by Cambridge University Press:  14 January 2013

Veaceslav Coropceanu
Affiliation:
Georgia Institute of Technology; coropceanu@gatech.edu
Yuan Li
Affiliation:
Georgia Institute of Technology; y.li@gatech.edu
Yuanping Yi
Affiliation:
Georgia Institute of Technology; yyi6@mail.gatech.edu
Lingyun Zhu
Affiliation:
Georgia Institute of Technology; lzhu34@mail.gatech.edu
Jean-Luc Brédas
Affiliation:
Georgia Institute of Technology; jean-luc.bredas@chemistry.gatech.edu
Get access

Abstract

The aim of this article is to briefly review the progress made over the past few years in the theoretical description of the intrinsic charge-transport properties of organic molecular crystals. We first discuss the state-of-the-art methodologies used in the derivation of the electronic coupling and electron-phonon coupling constants. We illustrate the application of these techniques to two classes of semiconductors of interest for crystal-based organic electronics: crystals consisting of a single molecular building block, such as oligoacenes and their derivatives, and bimolecular crystals consisting of donor and acceptor compounds. After a brief overview of recent developments in the polaron modeling of the electronic and electrical properties of these systems, we examine the impact that the interplay between electronic interactions and various electron-phonon mechanisms has on the temperature dependence of the charge-carrier mobility.

Type
Research Article
Copyright
Copyright © Materials Research Society 2013

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Coropceanu, V., Cornil, J., da Silva Filho, D.A., Olivier, Y., Silbey, R., Brédas, J.L., Chem. Rev. 107, 926 (2007).CrossRef
Bässler, H., Köhler, A., Top. Curr. Chem. 312, 1 (2012).
Grozema, F.C., Siebbeles, L.D.A., Int. Rev. Phys. Chem. 27, 87 (2008).CrossRef
Shuai, Z.G., Wang, L.J., Li, Q.K., Adv. Mater. 23, 1145 (2011).CrossRef
Troisi, A., Adv. Polym. Sci. 223, 259 (2010).
Anthony, J.E., Angew. Chem. Int. Ed. 47, 452 (2008).CrossRef
Podzorov, V., Menard, E., Borissov, A., Kiryukhin, V., Rogers, J.A., Gershenson, M.E., Phys. Rev. Lett. 93, 086602 (2004).CrossRef
Sundar, V.C., Zaumseil, J., Podzorov, V., Menard, E., Willett, R.L., Someya, T., Gershenson, M.E., Rogers, J.A., Science 303, 1644 (2004).CrossRef
Takeya, J., Yamagishi, M., Tominari, Y., Hirahara, R., Nakazawa, Y., Nishikawa, T., Kawase, T., Shimoda, T., Ogawa, S., Appl. Phys. Lett. 90, 102120 (2007).CrossRef
Jurchescu, O.D., Baas, J., Palstra, T.T.M., Appl. Phys. Lett. 84, 3061 (2004).CrossRef
Horiuchi, S., Hasegawa, T., Tokura, Y., J. Phys. Soc. Jpn. 75, 051016 (2006).CrossRef
Hasegawa, T., Takeya, J., Sci. Technol. Adv. Mater. 10, 024314 (2009).CrossRef
Zhu, L.Y., Yi, Y.P., Li, Y., Kim, E.G., Coropceanu, V., Brédas, J.L., J. Am. Chem. Soc. 134, 2340 (2012).CrossRef
Zhang, J., Geng, H., Virk, T.S., Zhao, Y., Tan, J., Di, C.-A., Xu, W., Singh, K., Hu, W., Shuai, Z., Liu, Y., Zhu, D., Adv. Mater. 24, 2603 (2012).CrossRef
Hasegawa, T., Mattenberger, K., Takeya, J., Batlogg, B., Phys. Rev. B 69, 245115 (2004).CrossRef
Valeev, E.F., Coropceanu, V., da Silva Filho, D.A., Salman, S., Brédas, J.L., J. Am. Chem. Soc. 128, 9882 (2006).CrossRef
Coropceanu, V., Sánchez-Carrera, R.S., Paramonov, P., Day, G.M., Brédas, J.L., J. Phys. Chem. C 113, 4679 (2009).CrossRef
Girlando, A., Grisanti, L., Masino, M., Bilotti, I., Brillante, A., Della Valle, R.G., Venuti, E., Phys. Rev. B 82, 035208 (2010).CrossRef
Martinelli, N.G., Idé, J., Sánchez-Carrera, R.S., Coropceanu, V., Brédas, J.L., Ducasse, L., Castet, F., Cornil, J., Beljonne, D., J. Phys. Chem. C 113, 20678 (2010).CrossRef
Sánchez-Carrera, R.S., Paramonov, P., Day, G.M., Coropceanu, V., Brédas, J.L., J. Am. Chem. Soc. 132, 14437 (2010).CrossRef
Li, Y., Yi, Y.P., Coropceanu, V., Brédas, J.L., Phys. Rev. B 85, 245201 (2012).CrossRef
Ciuchi, S., Fratini, S., Phys. Rev. Lett. 106, 166403 (2011).CrossRef
Perroni, C.A., Marigliano Ramaglia, V., Cataudella, V., Phys. Rev. B 84, 014303 (2011).CrossRef
Cataudella, V., De, G. Filippis, Perroni, C.A., Phys. Rev. B 83, 165203 (2011).
Fratini, S., Ciuchi, S., Phys. Rev. Lett. 103, 266601 (2009).CrossRef
Troisi, A., Orlandi, G., Phys. Rev. Lett. 96, 086601 (2006).CrossRef
Pope, M., Swenberg, C.E., Electronic Processes in Organic Crystals and Polymers, 2nd ed. (Oxford University Press, New York, 1999).Google Scholar
Silinsh, E., Cápek, V., Organic Molecular Crystals: Interaction, Localization, and Transport Phenomena (American Institute of Physics, New York, 1994).Google Scholar
Norton, J.E., Brédas, J.L., J. Am. Chem. Soc. 130, 12377 (2008).CrossRef
Holstein, T., Ann. Phys. (N.Y.) 8, 325 (1959).CrossRef
Holstein, T., Ann. Phys. (N.Y.) 8, 343 (1959).CrossRef
Peierls, R.E., Quantum Theory of Solids (Clarendon Press, Oxford, 1955).Google Scholar
Berlin, Y.A., Grozema, F.C., Siebbeles, L.D.A., Ratner, M.A., J. Phys. Chem. C 112, 10988 (2008).CrossRef
Balabin, I.A., Onuchic, J.N., Science 290, 114 (2000).CrossRef
May, V., Kühn, O., Charge and Energy Transfer Dynamics in Molecular Systems, 3rd rev. (Wiley-VCH, Weinheim, 2011).CrossRefGoogle Scholar
Newton, M.D., Chem. Rev. 91, 767 (1991).CrossRef
Jortner, J., Bixon, M., Eds., Electron Transfer─From Isolated Molecules to Biomolecules (Wiley, New York, 1999).Google Scholar
Hsu, C.P., Acc. Chem. Res. 42, 509 (2009).CrossRef
Kaduk, B., Kowalczyk, T., Van Voorhis, T., Chem. Rev. 112, 321 (2012).CrossRef
Koopmans, T., Physica 1, 104 (1934).CrossRef
Senthilkumar, K., Grozema, F.C., Bickelhaupt, F.M., Siebbeles, L.D.A., J. Chem. Phys. 119, 9809 (2003).CrossRef
Li, Y., Coropceanu, V., Brédas, J.L., J. Phys. Chem. Lett. 3, 3325 (2012).CrossRef
Kakuta, H., Hirahara, T., Matsuda, I., Nagao, T., Hasegawa, S., Ueno, N., Sakamoto, K., Phys. Rev. Lett. 98, 247601 (2007).CrossRef
Marcus, R.A., Rev. Mod. Phys. 65, 599 (1993).CrossRef
Barbara, P.F., Meyer, T.J., Ratner, M.A., J. Phys. Chem. 100, 13148 (1996).CrossRef
Coropceanu, V., Malagoli, M., da Silva Filho, D.A., Gruhn, N.E., Bill, T.G., Brédas, J.L., Phys. Rev. Lett. 89, 275503 (2002).CrossRef
Brovchenko, I.V., Chem. Phys. Lett. 278, 355 (1997).CrossRef
McMahon, D.P., Troisi, A., J. Phys. Chem. Lett. 1, 941 (2010).CrossRef
Su, W.P., Schrieffer, J.R., Heeger, A.J., Phys. Rev. Lett. 42, 1698 (1979).CrossRef
Hannewald, K., Stojanović, V.M., Schellekens, J.M.T., Bobbert, P.A., Kresse, G., Hafner, J., Phys. Rev. B 69, 075211 (2004).CrossRef
Wang, L.J., Peng, Q., Li, Q.K., Shuai, Z., J. Chem. Phys. 127, 044506 (2007).CrossRef
Girlando, A., Masino, M., Bilotti, I., Brillante, A., Della Valle, R.G., Venuti, E., Phys. Chem. Chem. Phys. 14, 1694 (2012).CrossRef
Yi, Y., Coropceanu, V., Brédas, J.L., J. Chem. Phys. 137, 164303 (2012).CrossRef
Troisi, A., Orlandi, G., J. Phys. Chem. A 110, 4065 (2006).CrossRef
Munn, R.W., Silbey, R., J. Chem. Phys. 83, 1843 (1985).CrossRef
Munn, R.W., Silbey, R., J. Chem. Phys. 83, 1854 (1985).CrossRef
Ortmann, F., Bechstedt, F., Hannewald, K., Phys. Rev. B 79, 235206 (2009).CrossRef
Chen, D.M., Ye, J., Zhang, H.J., Zhao, Y., J. Phys. Chem. B 115, 5312 (2011).CrossRef
Mahan, G.D., Many-Particle Physics, 2nd ed. (Plenum, New York, 1990).CrossRefGoogle Scholar
Wang, D., Chen, L.P., Zheng, R.H., Wang, L.J., Shi, Q., J. Chem. Phys. 132, 081101 (2010).CrossRef
Bohlin, J., Linares, M., Stafstrom, S., Phys. Rev. B 83, 085209 (2011).CrossRef
Zhong, X.X., Zhao, Y., J. Chem. Phys. 135, 134110 (2011).CrossRef
Zhao, Y., Brown, D.W., Lindenberg, K., J. Chem. Phys. 100, 2335 (1994).CrossRef

Save article to Kindle

To save this article to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Intrinsic charge transport in single crystals of organic molecular semiconductors: A theoretical perspective
Available formats
×

Save article to Dropbox

To save this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Dropbox account. Find out more about saving content to Dropbox.

Intrinsic charge transport in single crystals of organic molecular semiconductors: A theoretical perspective
Available formats
×

Save article to Google Drive

To save this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Google Drive account. Find out more about saving content to Google Drive.

Intrinsic charge transport in single crystals of organic molecular semiconductors: A theoretical perspective
Available formats
×
×

Reply to: Submit a response

Please enter your response.

Your details

Please enter a valid email address.

Conflicting interests

Do you have any conflicting interests? *