Skip to main content Accessibility help
×
Home
Hostname: page-component-99c86f546-5rzhg Total loading time: 0.328 Render date: 2021-12-04T02:54:02.637Z Has data issue: true Feature Flags: { "shouldUseShareProductTool": true, "shouldUseHypothesis": true, "isUnsiloEnabled": true, "metricsAbstractViews": false, "figures": true, "newCiteModal": false, "newCitedByModal": true, "newEcommerce": true, "newUsageEvents": true }

Article contents

In Situ X-Ray Photoelectron Spectroscopy Studies of Gas-Solid Interfaces at Near-Ambient Conditions

Published online by Cambridge University Press:  31 January 2011

Get access

Abstract

X-ray photoelectron spectroscopy (XPS) is a quantitative, chemically specific technique with a probing depth of a few angstroms to a few nanometers. It is therefore ideally suited to investigate the chemical nature of the surfaces of catalysts. Because of the scattering of electrons by gas molecules, XPS is generally performed under vacuum conditions. However, for thermodynamic and/or kinetic reasons, the catalyst's chemical state observed under vacuum reaction conditions is not necessarily the same as that of a catalyst under realistic operating pressures. Therefore, investigations of catalysts should ideally be performed under reaction conditions, that is, in the presence of a gas or gas mixtures. Using differentially pumped chambers separated by small apertures, XPS can operate at pressures of up to 1 Torr, and with a recently developed differentially pumped lens system, the pressure limit has been raised to about 10 Torr. Here, we describe the technical aspects of high-pressure XPS and discuss recent applications of this technique to oxidation and heterogeneous catalytic reactions on metal surfaces.

Type
Research Article
Copyright
Copyright © Materials Research Society 2007

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1.B.M., Weckhuysen, Ed., In Situ Spectroscopy of Catalysts (American Scientific Publishers, Valencia, Calif., 2004).Google Scholar
2.Niemandsverdriet, J.W., Spectroscopy in Catalysis (Wiley, Weinheim, ed. 2, 2000).Google Scholar
3.Lamberti, C., Groppo, E., Spoto, G., Bordiga, S., Zecchina, A., Adv. Catal. 51, 1 (2007).Google Scholar
4.Stair, P.C., Adv. Catal. 51, 75 (2007).Google Scholar
5.Rupprechter, G., Adv. Catal. 51, 133 (2007).Google Scholar
6.Knop-Gericke, A., Hävecker, M., Schedel-Niedrig, T., Schlögl, R., Top. Catal. 10, 187 (2000).CrossRefGoogle Scholar
7.van der Eerden, A.M.J., van Bokhoven, J.A., Smith, A.D., Koningsberger, D.C., Rev. Sci. Instrum. 71, 3260 (2000).CrossRefGoogle Scholar
8.Brückner, A., Adv. Catal. 51, 265 (2007).Google Scholar
9.Hunger, M., Weitkamp, J., Ang. Chem. Int. Ed. 40, 2954 (2001).3.0.CO;2-#>CrossRefGoogle Scholar
10.Millet, J.-M.M., Adv. Catal. 51, 309 (2007).Google Scholar
11.Tanuma, S., Powell, C.J., Penn, D.R., Surf. Interface Anal. 21, 165 (1994).CrossRefGoogle Scholar
12.Siegbahn, K., Nordling, C., Johansson, G., Hedman, J., Heden, P.F., Hamrin, K., Gelius, U., Bergmark, T., Werme, L.O., Manne, R., Baer, Y., ESCA Applied to Free Molecules (North-Holland, Amsterdam, 1969).Google Scholar
13.Siegbahn, H., Siegbahn, K., J. Electron Spectrosc. Relat. Phenom. 2, 319 (1973).CrossRefGoogle Scholar
14.Fellner-Feldegg, H., Siegbahn, H., Asplund, L., Kelfve, P., Siegbahn, K., J. Electron Spectrosc. Relat. Phenom. 7, 421 (1975).CrossRefGoogle Scholar
15.Siegbahn, H., Svensson, S., Lundholm, M., J. Electron Spectrosc. Relat. Phenom. 24, 295 (1981).CrossRefGoogle Scholar
16.Joyner, R.W., Roberts, M.W., Yates, K., Surf. Sci. 87, 501 (1979).CrossRefGoogle Scholar
17.Ruppender, H.J., Grunze, M., Kong, C.W., Wilmers, M., Surf. Interface Anal. 15, 245 (1990).CrossRefGoogle Scholar
18.Kelly, M.A., Shek, M.L., Pianetta, P., Gür, T.M., Beasley, M.R., J.Vac. Sci. Technol. A 19, 2127 (2001).CrossRefGoogle Scholar
19.Pantförder, J., Pöllmann, S., Zhu, J.F., Borgmann, D., Denecke, R., Steinrück, H.-P., Rev. Sci. Instrum. 76, 014102 (2005).CrossRefGoogle Scholar
20.Joyner, R.W., Roberts, M.W., Chem. Phys. Lett. 60, 459 (1979).CrossRefGoogle Scholar
21.Boronin, A.I., Bukhtiyarov, V.I., Vishnevskii, A.L., Boreskov, G.K., Savchenko, V.I., Surf. Sci. 201, 195 (1988).CrossRefGoogle Scholar
22.Bukhtiyarov, V.I., Prosvirin, I.P., Tikhomirov, E.P., Kaichev, V.V., Sorokin, A.M., Evstigneev, V.V., React. Kinet. Catal. Lett. 79, 181 (2003).CrossRefGoogle Scholar
23.Kaichev, V.V., Prosvirin, I.P., Bukhtiyarov, V.I., Unterhalt, H., Rupprechter, G., Freund, H.-J., J. Phys. Chem. B 107, 3522 (2003).CrossRefGoogle Scholar
24.Baxter, J.P., Grunze, M., Kong, C.W., J. Vac. Sci. Technol. A 6, 1123 (1988).CrossRefGoogle Scholar
25.Grunze, M., Dwyer, D.J., Nassir, M., Tsai, Y., ACS Symp. Ser. 482, 169 (1992).CrossRefGoogle Scholar
26.Ogletree, D.F., Bluhm, H., Lebedev, G., Fadley, C.S., Hussain, Z., Salmeron, M., Rev. Sci. Instrum. 73, 3872 (2002).CrossRefGoogle Scholar
27.Bluhm, H., Hävecker, M., Ihmann, K., Kleimenov, E., Teschner, D., Ogletree, D.F., Salmeron, M., Knop-Gericke, A., Schlögl, R., Rev. Sci. Instrum. (2007) submitted.Google Scholar
28.Bluhm, H., Andersson, K., Araki, T., Benzerara, K., Brown, G.E., Dynes, J.J., Ghosal, S., Gilles, M.K., Hansen, H.-Ch., Hemminger, J.C., Hitchcock, A.P., Ketteler, G., Kilcoyne, A.L.D., Kneedler, E., Lawrence, J.R., Leppard, G.G., Majzlam, J., Mun, B.S., Myneni, S.C.B., Nilsson, A., Ogasawara, H., Ogletree, D.F., Pecher, K., Salmeron, M., Shuh, D.K., Tonner, B., Tyliszczak, T., Warwick, T., Yoon, T.H., J. Electron Spectrosc. Relat. Phenom. 150, 86 (2006).CrossRefGoogle Scholar
29.Requejo, F.G., Hebenstreit, E.L.D., Ogletree, D.F., Salmeron, M., J. Catal. 226, 83 (2004).CrossRefGoogle Scholar
30.Over, H., Kim, Y.D., Seitsonen, A.P., Lundgren, E., Schmid, M., Varga, P., Morgante, A., Ertl, G., Science 287, 1474 (2000).CrossRefGoogle Scholar
31.Liu, H., Iglesia, E., J. Chem. Phys. B 109, 2155 (2005).CrossRefGoogle Scholar
32.Seddon, E.A., Seddon, K.R., The Chemistry of Ruthenium (Elsevier Science, New York, 1984).Google Scholar
33.Mars, P., van Krevelen, D.W., Chem. Eng. Sci. 3, 41 (1954).CrossRefGoogle Scholar
34.Carlisle, C.I., Fujimoto, T., Sim, W.S., King, D.A., Surf. Sci. 470, 15 (2000).CrossRefGoogle Scholar
35.Labinger, J.A., Ott, K.C., Catal. Lett. 4, 245 (1990).CrossRefGoogle Scholar
36.Bluhm, H., Hävecker, M., Knop-Gericke, A., Kleimenov, E., Schlögl, R., Teschner, D., Bukhtiyarov, V.I., Ogletree, D.F., Salmeron, M., J. Phys. Chem. B. 108, 14340 (2004).CrossRefGoogle Scholar
37.Zhou, L., Gunther, S., Moszynski, D., Imbihl, R., J. Catal. 235, 359 (2005).CrossRefGoogle Scholar
38.Vogel, W., Alonso-Vante, N., J. Catal. 232, 395 (2005).CrossRefGoogle Scholar
39.Narkhede, V., Assmann, J., Muhler, M., Z. Phys. Chem. 219, 979 (2005).CrossRefGoogle Scholar
40.Blume, R., Hävecker, M., Zafeiratos, S., Teschner, D., Kleimenov, E., Knop-Gericke, A., Schlögl, R., Barinov, A., Dudin, P., Kiskinova, M., J. Catal. 239, 354 (2006).CrossRefGoogle Scholar
41.Blume, R., Hävecker, M., Zafeiratos, S., Teschner, D., Vass, E., Schnörch, P., Knop-Gericke, A., Schlögl, R., Lizzit, S., Dudin, P., Barinov, A., Kiskinova, M., Catal. Today 124, 71 (2007).CrossRefGoogle Scholar
42.Blume, R., Hävecker, M., Zafeiratos, S., Teschner, D., Knop-Gericke, A., Schlögl, R., Dudin, P., Barinov, A., Kiskinova, M., Phys. Chem. Chem. Phys. 9, 3449 (2007).CrossRefGoogle Scholar
43.Blume, R., Niehus, H., Conrad, H., Böttcher, A., Aballe, L., Gregoratti, L., Barinov, A., Kiskinova, M., J. Phys. Chem. B 109, 14052 (2005) and references therein.CrossRefGoogle Scholar
44.Reuter, K., Scheffler, M., Phys. Rev. B 73, 1 (2006) and references therein.CrossRefGoogle Scholar
45.Mavrikakis, M., Hammer, B., Norskov, J.K., Phys. Rev. Lett. 81, 2819 (1998).CrossRefGoogle Scholar
46.Lundgren, E., Gustafson, J., Mikkelsen, A., Andersen, J.N., Stierle, A., Dosch, H., Todorova, M., Rogal, J., Reuter, K., Scheffler, M., Phys. Rev. Lett. 92, 046101 (2004).CrossRefGoogle Scholar
47.Ketteler, G., Ogletree, D.F., Bluhm, H., Liu, H., Hebenstreit, E.L.D., Salmeron, M., J. Am. Chem. Soc. 127, 18269 (2005).CrossRefGoogle Scholar
48.Lundgren, E., Kresse, G., Klein, C., Borg, M., Andersen, J.N., De Santis, M., Gauthier, Y., Konvicka, C., Schmid, M., Varga, P., Phys. Rev. Lett. 88, 246103 (2002).CrossRefGoogle Scholar
49.Todorova, M., Li, W.X., Ganduglia-Pirovano, M.V., Stampfl, C., Reuter, K., Scheffler, M., Phys. Rev. Lett. 89, 096103 (2002).CrossRefGoogle Scholar
50.Barin, I., Thermochemical Data of Pure Substances (VCH, Weinheim, 1992).Google Scholar
51.Reuter, K., Scheffler, M., Appl. Phys. A 78, 793 (2004).CrossRefGoogle Scholar
52.Anderson, R.B., Stein, K.C., Feenan, J.J., Hofer, L.J.E., Ind. Eng. Chem. 53, 809 (1961).CrossRefGoogle Scholar
53.Cullis, C.F., Willatt, B.M., J. Catal. 83, 267 (1983).CrossRefGoogle Scholar
54.Hicks, R.F., Young, M.L., Lee, R.G., Qi, H., J. Catal. 122, 280 (1990).CrossRefGoogle Scholar
55.Lyubovsky, M., Pfefferle, L., Catal. Today 47, 29 (1999).CrossRefGoogle Scholar
56.Burch, R., Urbano, F.J., Loader, P.K., Appl. Catal. A 123, 173 (1995).CrossRefGoogle Scholar
57.Carstens, J.N., Su, S.C., Bell, A.T., J. Catal. 176, 136 (1998).CrossRefGoogle Scholar
58.Monteiro, R.S., Zemlyanov, D., Storey, J.M., Ribeiro, F.H., J. Catal. 199, 291 (2001).CrossRefGoogle Scholar
59.Monteiro, R.S., Zemlyanov, D., Storey, J.M., Ribeiro, F.H., J. Catal. 201, 37 (2001).CrossRefGoogle Scholar
60.Hoflund, G.B., Hagelin, H.A., Weaver, J.F., Salaita, G.N., Appl. Surf. Sci. 205, 102 (2003).CrossRefGoogle Scholar
61.Gabasch, H., Hayek, K., Klötzer, B., Unterberger, W., Kleimenov, E., Teschner, D., Zafeiratos, S., Hävecker, M., Knop-Gericke, A., Schlögl, R., Aszalos-Kiss, B., Zemlyanov, D., J. Phys. Chem C 111, 7957 (2007).CrossRefGoogle Scholar
62.McCarty, J.G., Catal. Today 26, 283 (1995).CrossRefGoogle Scholar
63.Salomonsson, P., Johansson, S., Kasemo, B., Catal. Lett. 33, 1 (1995).CrossRefGoogle Scholar
64.Zemlyanov, D., Aszalos-Kiss, B., Kleimenov, E., Teschner, D., Zafeiratos, S., Hävecker, M., Knop-Gericke, A., Schlögl, R., Gabasch, H., Unterberger, W., Hayek, K., Klötzer, B., Surf. Sci. 600, 983 (2006).CrossRefGoogle Scholar
65.Gabasch, H., Unterberger, W., Hayek, K., Klötzer, B., Kleimenov, E., Teschner, D., Zafeiratos, S., Hävecker, M., Knop-Gericke, A., Schlögl, R., Aszalos-Kiss, B., Zemlyanov, D., Surf. Sci. 600, 2980 (2006).CrossRefGoogle Scholar
66.Lundgren, E., Kresse, G., Klein, C., Borg, M., Andersen, J.N., De Santis, M., Gauthier, Y., Konvicka, C., Schmid, M., Varga, P., Phys. Rev. Lett. 88, 246103 (2002).CrossRefGoogle Scholar

Send article to Kindle

To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

In Situ X-Ray Photoelectron Spectroscopy Studies of Gas-Solid Interfaces at Near-Ambient Conditions
Available formats
×

Send article to Dropbox

To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

In Situ X-Ray Photoelectron Spectroscopy Studies of Gas-Solid Interfaces at Near-Ambient Conditions
Available formats
×

Send article to Google Drive

To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

In Situ X-Ray Photoelectron Spectroscopy Studies of Gas-Solid Interfaces at Near-Ambient Conditions
Available formats
×
×

Reply to: Submit a response

Please enter your response.

Your details

Please enter a valid email address.

Conflicting interests

Do you have any conflicting interests? *