Skip to main content Accessibility help
×
Home
Hostname: page-component-747cfc64b6-rxvp8 Total loading time: 0.287 Render date: 2021-06-16T00:01:47.237Z Has data issue: true Feature Flags: { "shouldUseShareProductTool": true, "shouldUseHypothesis": true, "isUnsiloEnabled": true, "metricsAbstractViews": false, "figures": true, "newCiteModal": false, "newCitedByModal": true, "newEcommerce": true }

Article contents

Growth, Spectroscopy, and Laser Application of Self-Ordered III-V Quantum Dots

Published online by Cambridge University Press:  29 November 2013

Get access

Extract

The development and application of semiconductor light-emitting and laser diodes has been a huge success during the last 30 years in key areas of modern technology like communications, recording, and printing. Still there is ample room for improvement through combination of the atomlike properties for zero-dimensionally localized carriers in quantum dots (QDs) with state-of-the-art semiconductor-laser technology. Low, temperature-insensitive threshold current; high gain; and differential gain have been predicted since the early 1980s.

In the past two decades, the fabrication of QDs has been attempted using colloidal techniques (see the article by Nozik and Mićić in this issue), patterning, etching, and layer fluctuations (see the article by Gammon in this issue). However a break-through occurred recently through the employment of self-ordering mechanisms during epitaxy of lattice-mismatched materials (see the next section) for the creation of high-density arrays of QDs that exhibit excellent optical properties, particularly high quantum efficiency, up to room temperature. The zero-dimensional carrier confinement and subsequent atomlike electronic properties have a drastic impact on optical properties (see the section on Spectroscopy). Also intimately connected is the applicability of QDs as a novel gain medium in state-of-the-art laser diodes with superior properties (see the section on Lasers).

Type
Semiconductor Quantum Dots
Copyright
Copyright © Materials Research Society 1998

Access options

Get access to the full version of this content by using one of the access options below.

References

1.Asada, M., Miyamoto, Y., and Suematsu, Y., IEEE J. Quantum Electron. 22 (1986) p. 1915.CrossRefGoogle Scholar
2.Arakawa, Y. and Sakaki, H., Appl. Phys. Lett. 40 (1982) p. 939.CrossRefGoogle Scholar
3.Goldstein, L., Glas, F., Marzin, J.Y., Charasse, M.N., and Le Roux, G., IEEE J. Quantum Electron. 47 (1985) p. 1099.Google Scholar
4.Guha, S., Madhukar, A., and Rajkumar, K.C., IEEE J. Quantum Electron. 57 (1990) p. 2110.Google Scholar
5.Tabuchi, M., Noda, S., and Sasaki, A., in Science and Technology of Mcsoscopic Structures, edited by Namba, S., Hamaguchi, C., and Ando, T. (Springer, Tokyo, 1992) p. 379.CrossRefGoogle Scholar
6.Leonard, D., Krishnamurthy, M., Reaves, C.M., DenBaars, S.P., and Petroff, P.M., Appl. Phys. Lett. 63 (1993) p. 3203.CrossRefGoogle Scholar
7.Ledentsov, N.N., Grundmann, M., Kirstaedter, N., Christen, J., Heitz, R., Böhrer, J., Heinrichsdorff, F., Bimberg, D., Ruvimov, S.S., Werner, P., Richter, U., Gösele, U., Heydenreich, J., Ustinov, V.M., Egorov, A.Yu., Maximov, M.V., Kop'ev, P.S., and Alferov, Zh.I., Proc. 22nd Int. Conf. on Phys. Semicond., vol. 3, edited by Lockwood, D.J. (World Scientific, Singapore, 1995) p. 1855.Google Scholar
8.Kurtenbach, A., Eberl, K., and Shitara, T., Appl. Phys. Lett. 66 (1995) p. 361.CrossRefGoogle Scholar
9.Carlsson, N., Seifert, W., Petersson, A., Castrillo, P., Pistol, M.E., and Samuelson, L., Appl. Phys. Lett. 65 (1994) p. 3093; V.A. Shchukin, N.N. Ledentsov, M. Grundmann, P.S. Kop'ev, and D. Bimberg, Surf. Sci. 352 (1996) p. 117.CrossRefGoogle Scholar
10.Eaglesham, D.J. and Cerullo, M., Phys. Rev. Lett. 64 (1990) p. 1943.CrossRefGoogle Scholar
11.Stranski, I.N. and Krastanow, L., Sitzungsberichte d. Akad. d. Wissenschaften in Wien, Abt. IIb, Band 146 (1937) p. 797.Google Scholar
12.Bressler-Hill, V., Lorke, A., Varma, S., Petroff, P.M., and Weinberg, W.H., Phys. Rev. B 50 (1994) p. 8479.CrossRefGoogle Scholar
13.Cirlin, G.E., Guryanov, G.M., Golubok, A.O., Tipissev, S.Ya., Ledentsov, N.N., Kop'ev, P.S., Grundmann, M., and Bimberg, D., Appl. Phys. Lett. 67 (1995) p. 97.CrossRefGoogle Scholar
14.Heitz, R., Ramachandran, T.R., Kalburge, A., Xie, Q., Mukhametzhanov, I., Chen, P., and Madhukar, A., Phys. Rev. Lett. 78 (1997) p. 4071.CrossRefGoogle Scholar
15.Ledentsov, N.N., Grundmann, M., Kirstaedter, N., Schmidt, O., Heitz, R., Böhrer, J., Bimberg, D., Ustinov, V.M., Shchukin, V.A., Egorov, A.Yu., Zhukov, A.E., Zaitsev, S., Kop'ev, P.S., Alferov, Zh.I., Ruvimov, S.S., Werner, P., Gösele, U., and Heydenreich, J., Solid State Electron. 40 (1996) p. 785.CrossRefGoogle Scholar
16.Oshinowo, J., Nishioka, M., lshida, S., and Arakawa, Y., Appl. Phys. Lett. 65 (1994) p. 1421.CrossRefGoogle Scholar
17.Heinrichsdorff, F., Grundmann, M., Krost, A., Bimberg, D., Kosogov, A., and Werner, P., Appl. Phys. Lett. 68 (1996) p. 3284.CrossRefGoogle Scholar
18.Heinrichsdorff, F., Mao, M-H., Kirstaedter, N., Krost, A., Bimberg, D., Kosogov, A.O., and Werner, P., Appl. Phys. Lett. 71 (1997) p. 22.CrossRefGoogle Scholar
19.Grundmann, M., Ledentsov, N.N., Christen, J., Böhrer, J., Bimberg, D., Ruvimov, S.S., Werner, P., Richter, U., Gösele, U., Heydenreich, J., Ustinov, V.M., Egorov, A.Yu., Zhukov, A.E., Kop'ev, P.S., and Alferov, Zh.I., Phys. Status Solidi B 188 (1995) p. 249.CrossRefGoogle Scholar
20.Bimberg, D., Grundmann, M., Ledentsov, N.N., Ruvimov, S.S., Werner, P., Richter, U., Heydenreich, J., Ustinov, V.M., Kop'ev, P.S., and Alferov, Zh.I., Thin Solid Films 267 (1995) p. 32.CrossRefGoogle Scholar
21.Shchukin, V.A., Ledentsov, N.N., Kop'ev, P.S., and Bimberg, D., Phys. Rev. Lett. 75 (1995) p. 2968.CrossRefGoogle Scholar
22.Xie, Q., Madhukar, A., Chen, P., and Kobayashi, N.P., Phys. Rev. Lett. 75 (1995) p. 2542.CrossRefGoogle Scholar
23.Solomon, G.S., Trezza, J.A., Marshall, A.F., and Harris, J.S., Phys. Rev. Lett. 76 (1996) p. 952.CrossRefGoogle Scholar
24.Ledentsov, N.N., Shchukin, V.A., Grundmann, M., Kirstaedter, N., Böhrer, J., Schmidt, O., Bimberg, D., Ustinov, V.M., Egorov, A.Yu., Zhukov, A.E., Kop'ev, P.S., Zaitsev, S.V., Gordeev, N.Yu., Alferov, Zh.I., Borovkov, A.I., Kosogov, A.O., Ruvimov, S.S., Werner, P., Gösele, U., and Heydenreich, J., Phys. Rev. B 54 (1996) p. 8743.CrossRefGoogle Scholar
25.Sugiyama, Y., Nakata, Y., Imamura, K., Muto, Sh., and Yokoyama, N., Jpn. J. Appl. Phys. 35 (1997) p. 1320.CrossRefGoogle Scholar
26.Tersoff, J., Teichert, C., and Lagally, M.G., Phys. Rev. Lett. 76 (1996) p. 1675.CrossRefGoogle Scholar
27.Darhuber, A.A., Holy, V., Stangl, J., Bauer, G., Krost, A., Heinrichsdorff, F., Grundmann, M., Bimberg, D., Ustinov, V.M., Kop'ev, P.S., Kosogov, A.O., and Werner, P., Appl. Phys. Lett. 70 (1997) p. 955.CrossRefGoogle Scholar
28.Grundmann, M., Christen, J., Ledentsov, N.N., Böhrer, J., Bimberg, D., Ruvimov, S.S., Werner, P., Richter, U., Gösele, U., Heydenreich, J., Ustinov, V.M., Egorov, A.Yu., Zhukov, A.E., Kop'ev, P.S., and Alferov, Zh.I., Phys. Rev. Lett. 74 (1995) p. 4043.CrossRefGoogle Scholar
29.Marzin, J-Y., Gerard, J-M., Izrael, A., Barrier, D., and Bastard, G., Phys. Rev. Lett. 73 (1994) p. 716.CrossRefGoogle Scholar
30.Grundmann, M., Ledentsov, N.N., Stier, O., Bimberg, D., Ustinov, V.M., Kop'ev, P.S., and Alferov, Zh.I., Appl. Phys. Lett. 68 (1996) p. 979.CrossRefGoogle Scholar
31.Heitz, R., Grundmann, M., Ledentsov, N.N., Eckey, L., Veit, M., Bimberg, D., Ustinov, V.M., Egorov, A.Yu., Zhukov, A.E., Kop'ev, P.S., and Alferov, Zh.I., Appl. Phys. Lett. 68 (1996) p. 361.CrossRefGoogle Scholar
32.Benisty, H., Sotomayor-Torres, C.M., and Weisbuch, C., Phys. Rev. B 44 (1991) p. 10945.CrossRefGoogle Scholar
33.Heitz, R., Veit, M., Kalburge, A., Xie, Q., Grundmann, M., Chen, P., Ledentsov, N.N., Hoffmann, A., Madhukar, A., Bimberg, D., Ustinov, V.M., Kop'ev, P.S., and Alferov, Zh.I., in Proc. 8th Conf. on Modulated Semiconductor Structures (MSS-8) (Santa Barbara, July 1997).Google Scholar
34.Grundmann, M. and Bimberg, D., Phys. Rev. B 55 (1997) p. 9740.CrossRefGoogle Scholar
35.Grundmann, M. and Bimberg, D., Phys. Status Solidi B 203 (1997).3.0.CO;2-M>CrossRefGoogle Scholar
36.Schmidt, O.G., Kirstaedter, N., Ledentsov, N.N., Mao, M-H., Bimberg, D., Ustinov, V.M., Egorov, A.Yu., Zhukov, A.E., Maximov, M.V., Kop'ev, P.S., and Alferov, Zh.I., Electron. Lett. 32 (1996) p. 1302.CrossRefGoogle Scholar
37.Vahala, K.J., IEEE J. Quantum Electron. 24 (1988) p. 523.CrossRefGoogle Scholar
38.Asryan, L.V. and Suris, R.A., Semicond. Sci. Technol. 11 (1996) p. 1.CrossRefGoogle Scholar
39.Grundmann, M. and Bimberg, D., Jpn. J. Appl. Phys. 36 (1997) p. 4181.CrossRefGoogle Scholar
40.Kirstaedter, N., Ledentsov, N.N., Grundmann, M., Bimberg, D., Ustinov, V.M., Ruvimov, S.S., Maximov, M.V., Kop'ev, P.S., ZAlferov, h.I., Richter, U., Werner, P., Gosele, U., and Heydenreich, J., Electron. Lett. 30 (1994) p. 1416.CrossRefGoogle Scholar
41.Bimberg, D., Kirstaedter, N., Ledentsov, N.N., Alferov, Zh.I., Kop'ev, P.S., and Ustinov, V.M., JEEE J. Quantum Electron. 3 (1997) p. 1.Google Scholar
42.Shoji, H., Nakata, Y., Mukai, K., Sugiyama, Y., Sugawara, M., Yokoyama, N., and Ishikawa, H., Appl. Phys. Lett. 71 (1997) p. 193.CrossRefGoogle Scholar
43.Maksimov, M.V., Gordeev, N.Yu., Zaitsev, S.V., Kop'ev, P.S., Kochnev, I.V., Ledentsov, N.N., Sakharov, A.V., Tsatsul'nikov, A.F., Shernyakov, Yu.M., Alferov, Zh.I., and Bimberg, D., Semicond. 31 (1997) p. 124.CrossRefGoogle Scholar
44.Kirstaedter, K., Schmidt, O., Lendentsov, N.N., Bimberg, D., Ustinov, V.M., Egorov, A.Yu., Zhukov, A.E., Maximov, M.V, Kop'ev, P.S., and Alferov, Zh.I., Appl. Phys. Lett. 69 (1996) p. 1226.CrossRefGoogle Scholar
45.Mirin, R., Gossard, A., and Bowers, J., Electron. Lett. 32 (1996) p. 1732.CrossRefGoogle Scholar
46.Mao, M-H., Heinrichsdorff, F., Krost, A., and Bimberg, D., Electron. Lett. in press.Google Scholar
47.Kamath, K., Phillips, J., Jiang, H., Singh, J., and Bhattacharya, P., Appl. Phys. Lett. 70 (1997) p. 2952.CrossRefGoogle Scholar
48.Shernyakov, Yu.M., Egorov, A.Yu., Zhukov, A.E., Zaitsev, A.V., Kovsh, A.R., Krestnikov, I.L., Lunev, A.V., Ledentsov, N.N., Maximov, M.V., Sakharov, A.V., Ustinov, V.M., Zhen, Z., Kop'ev, P.S., Alferov, Zh.I., and Bimberg, D., Pis'ma Zh. Tech. Fiz. [Sov. Tech. Phys. Lett] 23 (1) (1997) p. 51.Google Scholar
49.Saito, H., Nishi, K., Ogura, I., Sugou, S., and Sugimoto, Y., Appl. Phys. Lett. 69 (1996) p. 3140.CrossRefGoogle Scholar
50.Huffaker, D.L., Baklenov, O., Graham, L.A., Streetman, B.G., and Deppe, D.G., Appl. Phys. Lett. 70 (1997) p. 2356.CrossRefGoogle Scholar
51.Lott, J.A., Ledentsov, N.N., Ustinov, V.M., Egorov, A.Yu., Zhukov, A.E., Kop'ev, P.S., Alferov, Zh.I., and Bimberg, D., Electron. Lett. 33 (1997) p. 1150.CrossRefGoogle Scholar
52.Saito, H., Nishi, K., Sugou, S., and Sugimoto, Y., Appl. Phys. Lett. 71 (1997) p. 590.CrossRefGoogle Scholar
53.Lott, J.A.et al. (unpublished manuscript).Google Scholar

Send article to Kindle

To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Growth, Spectroscopy, and Laser Application of Self-Ordered III-V Quantum Dots
Available formats
×

Send article to Dropbox

To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

Growth, Spectroscopy, and Laser Application of Self-Ordered III-V Quantum Dots
Available formats
×

Send article to Google Drive

To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

Growth, Spectroscopy, and Laser Application of Self-Ordered III-V Quantum Dots
Available formats
×
×

Reply to: Submit a response

Please enter your response.

Your details

Please enter a valid email address.

Conflicting interests

Do you have any conflicting interests? *