Skip to main content Accessibility help
Hostname: page-component-544b6db54f-n9d2k Total loading time: 0.229 Render date: 2021-10-21T09:35:42.516Z Has data issue: true Feature Flags: { "shouldUseShareProductTool": true, "shouldUseHypothesis": true, "isUnsiloEnabled": true, "metricsAbstractViews": false, "figures": true, "newCiteModal": false, "newCitedByModal": true, "newEcommerce": true, "newUsageEvents": true }

Article contents

Functional Tissue Engineering Through Biofunctional Macromolecules and Surface Design

Published online by Cambridge University Press:  31 January 2011

Lorenzo Moroni
Institute for Biomedical Technology and Technical Medicine, University of Twente, The Netherlands; e-mail
Pamela Habibovic
Institute for Biomedical Technology and Technical Medicine, University of Twente, The Netherlands; e-mail
David J. Mooney
School of Engineering and Applied Sciences, Harvard University, Cambridge, MA 02138, USA; e-mail mooneyd@deas.harvard. edu.
Clemens A. van Blitterswijk
Institute for Biomedical Technology and Technical Medicine, University of Twente, The Netherlands; e-mail
Get access


Tissue engineering is a rapidly developing discipline that has already entered the clinics and will tremendously change patient management in the near future. The aim of classical tissue engineering is to heal damaged or diseased tissues and organs through the combination of cells, biological factors, and porous biomaterials. The resulting, engineered tissue must possess appropriate functional properties to replace or supplement the targeted tissue. This is still a challenge to overcome before tissue-engineered products can be considered a complete success. Classical tissue engineering approaches rely on the use of mature cells expanded in vitro and transplanted alone or seeded in passive 3D scaffolds, which can lead to the loss of cellular phenotype and production of nonfunctional extracellular matrix. An emerging strategy involves the design of bioactive 3D scaffolds with instructive properties able to recruit cells in situ and direct tissue formation. Here, we present and discuss recent efforts to achieve smart scaffolds encompassing macromolecular biofunctionalization and surface design.

Research Article
Copyright © Materials Research Society 2010

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)


1.Behrens, P., Bitter, T., Kurz, B., Russlies, M., Th Knee 13, 194 (2006).CrossRefGoogle Scholar
2.Pavesio, A.Abatangelo, G., Borrione, A., Brocchetta, D., Hollander, A.P., Kon, E., Torasso, F., Zanasi, S., Marcacci, M., Novartis Foundation Symp 249, 203 (2003).Google Scholar
3.Sadick, N., Sorhaindo, L., Expert Rev. Med Devices 4, 559 (2007).CrossRefGoogle Scholar
4.Arnesen, H., Lunde, K., Aakhus, S., Forfang, K., Lancet 369, 2142 (2007).CrossRefGoogle Scholar
5.Takahashi, J., Expert Rev. Neurother. 7, 667 (2007).CrossRefGoogle Scholar
6.Brittberg, M., Peterson, L., Sjogren-Jansson, E.Tallheden, T., Lindahl, A., J. Bone Joint Surg. Am 85-A (Suppl. 3), 109 (2003).CrossRefGoogle Scholar
7.Varghese, S., Hwang, N.S., Canver, A.C., Theprungsirikul, P., Lin, D.W., Elisseeff, J., Matrix Biol. 27, 12 (2007).CrossRefGoogle Scholar
8.Elisseeff, J., Puleo, C., Yang, F., Sharma, B., Orthod. Craniofac. Res. 8, 150 (2005).CrossRefGoogle Scholar
9.Hollister, S.J., Nat. Mater. 4, 518 (2005).CrossRefGoogle Scholar
10.Hutmacher, D.W., J. Biomater. Sci. Polym. Ed 12, 107 (2001).CrossRefGoogle Scholar
11.Moroni, L., Elisseeff, J.H., Materials Today 11 44 (2008).CrossRefGoogle Scholar
12.Sohier, J., Vlugt, T.J., Cabrol, N., Van Blitterswijk, C., de Groot, K., Bezemer, J.M., J Control Release 111, 95 (2006).CrossRefGoogle Scholar
13.Wang, Y., Bansal, V., Zelikin, A.N., Caruso, F.Nano Lett. 8, 1741 (2008).CrossRefGoogle Scholar
14.Kong, H.J., Mooney, D.J., Nat. Rev. Drug Discov. 6, 455 (2007).CrossRefGoogle Scholar
15.Lutolf, M.P., Hubbell, J.A., Nat. Biotechnol. 23, 47 (2005).CrossRefGoogle Scholar
16.Dalby, M.J., Gadegaard, N., Tare, R., Andar, A., Riehle, M.O., Herzyk, P., Wilkinson, C.D., Oreffo, R.O., Nat. Mater. 6, 997 (2007).CrossRefGoogle Scholar
17.Ruiz, S.A., Chen, C.S., Stem Cells 26, 2921 (2008).CrossRefGoogle Scholar
18.Alsberg, E., von Recum, H.A., Mahoney, M.J., Expert Opin. Biol. Ther. 6, 847 (2006).CrossRefGoogle Scholar
19.Mrksich, M., Dike, L.E., Tien, J., Ingber, D.E., Whitesides, G.M., Exp. Cell Res. 235, 305 (1997).CrossRefGoogle Scholar
20.Engler, A.J., Sen, S., Sweeney, H.L., Discher, D.E., Cell 126, 677 (2006).CrossRefGoogle ScholarPubMed
21.Evans, N.D., Minelli, C., Gentleman, E., LaPointe, V., Patankar, S.N., Kallivretaki, M., Chen, X., Roberts, C.J., Stevens, M.M., Eur. Cell. Mater. 18, 1 (2009).CrossRefGoogle Scholar
22.Fischbach, C., Mooney, D.J., Biomaterials 28, 2069 (2007).CrossRefGoogle Scholar
23.Chen, R.R., Silva, E.A., Yuen, W.W., Brock, A.A., Fischbach, C., Lin, A.S., Guldberg, R.E., Mooney, D.J., FASEB J. 21, 3896 (2007).CrossRefGoogle Scholar
24.Park, J.Y., Kim, S.K., Woo, D.H., Lee, E.J., Kim, J.H., Lee, S.H., Stem Cells 27, 2646 (2009).CrossRefGoogle ScholarPubMed
25.Shamloo, A., Ma, N., Poo, M.M., Sohn, L.L., Heilshorn, S.C., Lab Chip 8, 1292 (2008).CrossRefGoogle Scholar
26.Silva, E.A., Mooney, D.J., Biomaterials 31, 1235 (2010).CrossRefGoogle Scholar
27.Langer, R., Nature 392, 5 (1998).Google Scholar
28.Kang, C.E., Poon, P.C., Tator, C.H., Shoichet, M.S., Tissue Eng. Part A 15, 595 (2009).CrossRefGoogle Scholar
29.Sawyer, A.A., Song, S.J., Susanto, E., Chuan, P., Lam, C.X., Woodruff, M.A., Hutmacher, D.W., Cool, S.M., Biomaterials 30, 2479 (2009).CrossRefGoogle Scholar
30.Sakiyama-Elbert, S.E., Panitch, A., Hubbell, J.A., FASEB J. 15, 1300 (2001).CrossRefGoogle Scholar
31.Ehrbar, M., Djonov, V.G., Schnell, C., Tschanz, S.A., Martiny-Baron, G., Schenk, U., Wood, J., Burri, P.H., Hubbell, J.A., Zisch, A.H., Circ. Res. 94, 1124 (2004).CrossRefGoogle Scholar
32.Lutolf, M.P., Weber, F.E., Schmoekel, H.G., Schense, J.C., Kohler, T., Muller, R., Hubbell, J.A., Nat. Biotechnol. 21, 513 (2003).CrossRefGoogle Scholar
33.Jay, S.M., Shepherd, B.R., Andrejecsk, J.W., Kyriakides, T.R., Pober, J.S., Saltzman, W.M., Biomaterials 31, 3054 (2010).CrossRefGoogle Scholar
34.Hsieh, P.C.H., Davis, M.E., Gannon, J., MacGillivray, C., Lee, R.T., J. Clin. Invest. 116, 237 (2006).CrossRefGoogle Scholar
35.Borselli, C., Storrie, H., Benesch-Lee, F., Shvartsman, D., Cezar, C., Lichtman, J.W., Vandenburgh, H.H., Mooney, D.J., Proc. Natl. Acad. Sci. U.S.A. 107, 3287 (2010).CrossRefGoogle Scholar
36.Young, S., Patel, Z.S., Kretlow, J.D., Murphy, M.B., Mountziaris, P.M., Baggett, L.S., Ueda, H., Tabata, Y., Jansen, J.A., Wong, M., Mikos, A.G., Tissue Eng. Part A 15, 2347 (2009).CrossRefGoogle Scholar
37.Sun, Q., Silva, E.A., Wang, A., Fritton, J.C., Mooney, D.J., Schaffler, M.B., Grossman, P.M., Rajagopalan, S., Pharm. Res. 27, 264 (2010).CrossRefGoogle Scholar
38.Yilgor, P., Tuzlakoglu, K., Reis, R.L., Hasirci, N., Hasirci, V., Biomaterials 30, 3551 (2009).CrossRefGoogle Scholar
39.Curran, J.M., Chen, R., Hunt, J.A., Biomaterials 27, 4783 (2006).CrossRefGoogle Scholar
40.Curran, J.M., Chen, R., Hunt, J.A., Biomaterials 31, 1463 (2010).Google Scholar
41.DeForest, C.A., Polizzotti, B.D., Anseth, K.S., Nat. Mater. 8, 659 (2009).CrossRefGoogle Scholar
42.Kloxin, A.M., Kasko, A.M., Salinas, C.N., Anseth, K.S., Science 324, 59 (2009).CrossRefGoogle Scholar
43.Kim, J., Yoon, J., Hayward, R.C., Nat. Mater. 9, 159 (2010).CrossRefGoogle Scholar
44.Saha, K., Pollock, J.F., Schaffer, D.V., Healy, K.E., Curr. Opin. Chem. Biol. 11, 381 (2007).CrossRefGoogle Scholar
45.Zhang, K.C., Sugawara, A., Tirrell, D.A., Chembiochem 10, 2617 (2009).CrossRefGoogle Scholar
46.Comisar, W.A., Hsiong, S.X., Kong, H.J., Mooney, D.J., Linderman, J.J., Biomaterials 27, 2322 (2006).CrossRefGoogle Scholar
47.Patel, S., Tsang, J., Harbers, G.M., Healy, K.E., Li, S., J. Biomed. Mater. Res. A 83, 423 (2007).CrossRefGoogle Scholar
48.Hsiong, S.X., Huebsch, N., Fischbach, C., Kong, H.J., Mooney, D.J., Biomacromol. 9, 1843 (2008).CrossRefGoogle Scholar
49.Cushing, M.C., Liao, J.T., Jaeggli, M.P., Anseth, K.S., Biomater. 28, 3378 (2007).CrossRefGoogle Scholar
50.Weber, L.M., Hayda, K.N., Haskins, K., Anseth, K.S., Biomater. 28, 3004 (2007).CrossRefGoogle Scholar
51.Gunn, J.W., Turner, S.D., Mann, B.K., J. Biomed. Mater. Res. A 72, 91 (2005).CrossRefGoogle Scholar
52.Hwang, N.S., Varghese, S., Lee, H.J., Theprungsirikul, P., Canver, A., Sharma, B., Elisseeff, J., FEBS Lett. 581, 4172 (2007).CrossRefGoogle Scholar
53.Raeber, G.P., Lutolf, M.P., Hubbell, J.A., Biophys. J. 89, 1374 (2005).CrossRefGoogle Scholar
54.Lutolf, M.P., Lauer-Fields, J.L., Schmoekel, H.G., Metters, A.T., Weber, F.E., Fields, G.B., Hubbell, J.A., Proc. Natl. Acad. Sci. U.S.A. 100, 5413 (2003).CrossRefGoogle Scholar
55.Gelain, F., Horii, A., Zhang, S., Macromol. Biosci. 7, 544 (2007).CrossRefGoogle Scholar
56.Hartgerink, J.D., Beniash, E., Stupp, S.I., Science 294, 1684 (2001).CrossRefGoogle Scholar
57.Mata, A., Hsu, L., Capito, R., Aparicio, C., Henrikson, K., Stupp, S.I., Soft Mat. 5, 1228 (2009).CrossRefGoogle Scholar
58.Capito, R.M., Azevedo, H.S., Velichko, Y.S., Mata, A., Stupp, S.I., Science 319, 1812 (2008).CrossRefGoogle Scholar
59.Cui, H., Muraoka, T., Cheetham, A.G., Stupp, S.I., Nano Lett. 9, 945 (2009).CrossRefGoogle Scholar
60.Mei, Y., Cannizzaro, C., Park, H., Xu, Q., Bogatyrev, S.R., Yi, K., Goldman, N., Langer, R., Anderson, D.G., Small 4, 1600 (2008).CrossRefGoogle Scholar
61.Curran, J.M., Chen, R., Stokes, R., Irvine, E., Graham, D., Gubbins, E., Delaney, D., Amro, N., Sanedrin, R., Jamil, H., Hunt, J.A., J. Mater. Sci. Mater. Med. 21, 1021 (2009).CrossRefGoogle Scholar
62.Thapa, A., Webster, T.J., Haberstroh, K.M., J. Biomed. Mater. Res. A 67, 1374 (2003).CrossRefGoogle Scholar
63.Thapa, A., Miller, D.C., Webster, T.J., Haberstroh, K.M., Biomater. 24, 2915 (2003).CrossRefGoogle Scholar
64.Claase, M.B., Olde Riekerink, M.B., de Bruijn, J.D., Grijpma, D.W., Engbers, G.H., Feijen, J., Biomacromol. 4, 57 (2003).CrossRefGoogle Scholar
65.Chim, H., Ong, J.L., Schantz, J.T., Hutmacher, D.W., Agrawal, C.M., J. Biomed. Mater. Res. A 65, 327 (2003).CrossRefGoogle Scholar
66.Nelea, V., Luo, L., Demers, C.N., Antoniou, J., Petit, A., Lerouge, S., Wertheimer, R., Mwale, F., J. Biomed. Mater. Res. A 75, 216 (2005).CrossRefGoogle Scholar
67.Lipski, A.M., Jaquiery, C., Choi, H., Eberli, D., Stevens, M., Martin, I., Chen, I.W., Shastri, V.P., Adv. Mater. 19, 553 (2007).CrossRefGoogle Scholar
68.Li, W.J., Tuli, R., Huang, X., Laquerriere, P., Tuan, R.S., Biomater. 26, 5158 (2005).CrossRefGoogle Scholar
69.Jackman, R.J., Brittain, S.T., Adams, A., Prentiss, M.G., Whitesides, G.M., Science 280, 2089 (1998).CrossRefGoogle Scholar
70.Csucs, G., Michel, R., Lussi, J.W., Textor, M., Danuser, G., Biomaterials 24, 1713 (2003).CrossRefGoogle Scholar
71.Flaim, C.J., Chien, S., Bhatia, S.N., Nat. Methods 2, 119 (2005).CrossRefGoogle Scholar
72.Moroni, L., Lee, L.P., J. Biomed. Mater. Res. A 88, 644 (2009).CrossRefGoogle Scholar
73.Flemming, R.G., Murphy, C.J., Abrams, G.A., Goodman, S.L., Nealey, P.F., Biomaterials 20, 573 (1999).CrossRefGoogle Scholar
74.Duncan, A.C., Rouais, F., Lazare, S., Bordenave, L., Baquey, C., Colloids Surf. 54, 150 (2007).CrossRefGoogle Scholar
75.Dalby, M.J., Andar, A., Nag, A., Affrossman, S., Tare, R., McFarlane, S., Oreffo, R.O., J. R. Soc., Interface 5, 1055 (2008).CrossRefGoogle Scholar
76. P. De Biase, Capanna, R., Injury 36 (Suppl. 3), S43 (2005).Google Scholar
77.Habibovic, P., de Groot, K., J. Tissue Eng. Regen. Med. 1, 25 (2007).CrossRefGoogle Scholar
78.Habibovic, P., Yuan, H., van den Doel, M., Sees, T.M., van Blitterswijk, C.A., de Groot, K., J. Orthop. Res. 24, 867 (2006).CrossRefGoogle Scholar
79.Anderson, D.G., Levenberg, S., Langer, R., Nat. Biotechnol. 22, 863 (2004).CrossRefGoogle Scholar
80.Truckenmuller, R., Giselbrecht, S., van Blitterswijk, C., Dambrowsky, N., Gottwald, E., Mappes, T., Rolletschek, A., Saile, V., Trautmann, C., Weibezahn, K.F., Welle, A., Lab Chip 8, 1570 (2008).CrossRefGoogle Scholar
81.Flaim, C.J., Teng, D., Chien, S., Bhatia, S.N., Stem Cells Dev. 17, 29 (2008).CrossRefGoogle Scholar
82.Papenburg, B., Vogelaar, L., Bolhuis-Versteeg, L., Lammertink, R., Stamatialis, D., Wessling, M., Biomaterials 28, 1998 (2007).CrossRefGoogle Scholar
83.Figallo, E., Flaibani, M., Zavan, B., Abatangelo, G., Elvassore, N., Biotechnol. Prog. 23, 210 (2007).CrossRefGoogle Scholar
84.Choi, N.W., Cabodi, M., Held, B., Gleghorn, J.P., Bonassar, L.J., Stroock, A.D., Nat. Mater. 6, 908 (2007).CrossRefGoogle Scholar
85.Rivron, N.C., Rouwkema, J., Truckenmuller, R., Karperien, M., De Boer, J., van Blitterswijk, C.A., Biomater. 30, 4851 (2009).CrossRefGoogle Scholar
86.Groenendijk, M., Laser Technik Journal 3, 44 (2008).CrossRefGoogle Scholar
87.Groenendijk, M., Meijer, J., Journal of Laser Applications 18, 227 (2006).CrossRefGoogle Scholar

Send article to Kindle

To send this article to your Kindle, first ensure is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

Note you can select to send to either the or variations. ‘’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Functional Tissue Engineering Through Biofunctional Macromolecules and Surface Design
Available formats

Send article to Dropbox

To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

Functional Tissue Engineering Through Biofunctional Macromolecules and Surface Design
Available formats

Send article to Google Drive

To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

Functional Tissue Engineering Through Biofunctional Macromolecules and Surface Design
Available formats

Reply to: Submit a response

Please enter your response.

Your details

Please enter a valid email address.

Conflicting interests

Do you have any conflicting interests? *