Hostname: page-component-797576ffbb-pxgks Total loading time: 0 Render date: 2023-12-04T09:26:04.842Z Has data issue: false Feature Flags: { "corePageComponentGetUserInfoFromSharedSession": true, "coreDisableEcommerce": false, "useRatesEcommerce": true } hasContentIssue false

Directed Growth of Branched Nanowire Structures

Published online by Cambridge University Press:  31 January 2011

Get access

Abstract

We describe the production of hierarchical branched nanowire structures by the sequential seeding of multiple wire generations with metal nanoparticles. Such complex structures represent the next step in the study of functional nanowires, as they increase the potential functionality of nanostructures produced in a self-assembled way. It is possible, for example, to fabricate a variety of active heterostructure segments with different compositions and diameters within a single connected structure. The focus of this work is on epitaxial III-V semiconductor branched nanowire structures, with the two materials GaP and In As used as typical examples of branched structures with cubic (zinc blende) and hexagonal (wurtzite) crystal structures. The general morphology of these structures will be described, as well as the relationship between morphology and crystal structure.

Type
Research Article
Copyright
Copyright © Materials Research Society 2007

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1.Manna, L., Scher, E.C., and Alivisatos, A.P., J. Am. Chem. Soc. 122 (2002) p. 12700.Google Scholar
2.Grebinski, J.W., Hull, K.L., Zhang, J., Kosel, T.H., and Kuno, M., Chem. Mater. 16 (2004) p. 5260.Google Scholar
3.Hull, K.L., Grebinski, J.W., Kosel, T.H., and Kuno, M., Chem. Mater. 17 (2005) p. 4416.Google Scholar
4.Jun, Y.W., Lee, S.M., Kang, N.J., and Cheon, J., J. Am. Chem. Soc. 123 (2001) p. 5150.Google Scholar
5.Jun, Y.W., Jung, Y.Y., and Cheon, J., J. Am. Chem. Soc. 124 (2002) p. 615.Google Scholar
6.Manna, L., Milliron, D.J., Meisel, A., Scher, E.C., and Alivisatos, A.P., Nat. Mater. 2 (2003) p. 382.Google Scholar
7.Cheng, Y., Wang, Y., Chen, D., and Bao, F., J. Phys. Chem. B 109 (2005) p. 794.Google Scholar
8.Lao, Y.L., Wen, J.G., and Ren, Z.F., Nano Lett. 2 (2002) p. 1287.Google Scholar
9.Yan, H., He, R., Pham, J., and Yang, P., Adv. Mater. 15 (2003) p. 402.Google Scholar
10.Bae, S.Y., Seo, H.W., Choi, H.C., Park, J., and Park, J., J. Phys. Chem. B 108 (2004) p. 12318.Google Scholar
11.Zhang, T., Dong, W., Keeter-Brewer, M., Konar, S., Njabon, R.N., and Tian, Z.R., J. Am. Chem. Soc. 128 (2006) p. 10960.Google Scholar
12.Leung, Y.H., Djurisic, A.B., Gao, J., Xie, M.H., and Chan, W.K., Chem. Phys. Lett. 385 (2004) p. 155.Google Scholar
13.Zhu, Y.Q., Grobert, N., Terrones, H., Hare, J.P., Kroto, H.W., Hsu, W.K., Terrones, M., and Walton, D.R.M., J. Mater. Chem. 8 (1998) p. 1859.Google Scholar
14.Zhou, J., Ding, Y., Deng, S.Z., Gong, L., Xu, N.S., and Wang, Z.L., Adv. Mater. 14 (2005) p. 2107.Google Scholar
15.Gao, P.X. and Wang, Z.L., Appl. Phys. Lett. 84 (2004) p. 2883.Google Scholar
16.Gao, P.X., Ding, Y., and Wang, Z.L., Nano Lett. 3 (2003) p. 1315.Google Scholar
17.Wang, Z.L. and Pan, Z.W., Adv. Mater. 14 (2002) p. 1029.Google Scholar
18.Hu, J., Bando, Y., Zhan, J., Yuan, X., Sekiguchi, T., and Golberg, D., Adv. Mater. 17 (2005) p. 971.Google Scholar
19.Zhu, Y.Q., Hsu, W.K., Zhou, W.Z., Terrones, M., Kroto, H.W., and Walton, D.R.M., Chem. Phys. Lett. 347 (2001) p. 334.Google Scholar
20.Wan, Q., Wei, M., Zhi, D., MacManus-Driscoll, J.L., and Blamire, M.G., Adv. Mater. 18 (2006) p. 234.Google Scholar
21.Zhang, J., Yang, Y., Jiang, F., Li, J., Xu, B., Wang, S., and Wang, X., J. Cryst. Growth 293 (2006) p. 236.Google Scholar
22.Dick, K.A., Deppert, K., Larsson, M.W., Mårtensson, T., Seifert, W., Wallenberg, L.R., and Samuelson, L., Nat. Mater. 3 (2004) p. 380.Google Scholar
23.Dick, K.A., Deppert, K., Mårtensson, T., Seifert, W., and Samuelson, L., J. Cryst. Growth 272 (2004) p. 131.Google Scholar
24.Dick, K.A., Deppert, K., Karlsson, L.S., Wallenberg, L.R., Samuelson, L., and Seifert, W., Adv. Funct. Mater. 15 (2005) p. 1603.Google Scholar
25.Dick, K.A., Geretovszky, Zs., Mikkelsen, A., Karlsson, L.S., Lundgren, E., Malm, J.-O., Andersen, J.N., Samuelson, L., Seifert, W., Wacaser, B.A., and Deppert, K., Nanotechnology 17 (2006) p. 1344.Google Scholar
26.May, S.J., Zheng, J.-G., Wessels, B.W., and Lauhon, L.J., Adv. Mater. 17 (2005) p. 598.Google Scholar
27.Su, J., Cui, G., Gherasimova, M., Tsukamoto, H., Han, J., Ciuparu, D., Lim, S., Pfefferle, L., He, Y., Nurmikko, A.V., Broadbridge, C., and Lehman, A., Appl. Phys. Lett. 86 (2005) p. 13105.Google Scholar
28.Lan, Z.-H., Liang, C.-H., Hsu, C.-W., Wu, C.-T., Lin, H.-M., Dhara, S., Chen, K.-H., Chen, L.-C., and Chen, C.-C., Adv. Funct. Mater. 14 (2004) p. 233.Google Scholar
29.Wang, D., Qian, F., Yang, C., Zhong, Z., and Lieber, C.M., Nano Lett. 4 (2004) p. 871.Google Scholar
30.Wu, Z.H., Mei, X., Kim, D., Blumin, M., and Ruda, H.E., Appl. Phys. Lett. 83 (2003) p. 3368.Google Scholar
31.Yun, S.H., Wu, J.Z., Dibos, A., Zou, X.D., and Karlsson, U.O., Nano Lett. 6 (2006) p. 385.Google Scholar
32.Wagner, R.S. and Ellis, W.C., Appl. Phys. Lett. 4 (1964) p. 89.Google Scholar
33.Persson, A.I., Larsson, M.W., Stenström, S., Ohlsson, B.J., Samuelson, L., and Wallenberg, L.R., Nat. Mater. 3 (2004) p. 677.Google Scholar
34.Dick, K.A., Deppert, K., Mårtensson, T., Mandl, B., Samuelson, L., and Seifert, W., Nano Lett. 5 (2005) p. 761.Google Scholar
35.Willoughby, A.F.Rep. Prog. Phys. 41 (1978) p. 1665.Google Scholar
36.Mårtensson, T., Svensson, C.P.T., Wacaser, B.A., Larsson, M.W., Seifert, W., Deppert, K., Gustafsson, A., Wallenberg, L.R., and Samuelson, L., Nano Lett. 4 (2004) p. 1987.Google Scholar
37.Milnes, A.G. and Polyakov, A.Y., Mater. Sci. Eng. B 18 (1993) p. 237.Google Scholar
38.Wang, S.Q. and Ye, H.Q., J. Phys. Condens. Mater. 14 (2002) p. 9579.Google Scholar
39.Gaiduk, P.I., Komarov, F.F., Tishkov, V.S., Wesch, W., and Wendler, E., Phys. Rev. B 61 (2000) p. 15785.Google Scholar
40.Narayanan, V., Mahajan, S., Sukidi, N., Bachmann, K.J., Woods, V., and Dietz, N., Phil. Mag. A 80 (2000) p. 555.Google Scholar
41.Qadri, S.B., Skelton, E.F., Hsu, D., Dinsmore, A.D., Yang, J., Gray, H.F., and Ratna, B.R., Phys. Rev. B 60 (1999) p. 9191.Google Scholar
42.Takahashi, K. and Moriizumi, T., Jpn. J. Appl. Phys. 5 (1966) p. 657.Google Scholar
43.Magnusson, M.H., Deppert, K., Malm, J.-O., Bovin, J.-O., and Samuelson, L., J. Nanopart. Res. 1 (1999) p. 243.Google Scholar
44.Scheibel, H.G. and Porstendörfer, J., J. Aerosol Sci. 14 (1983) p. 113.Google Scholar
45.Knutson, E.O. and Whitby, K.T., J. Aerosol Sci. 6 (1975) p. 443.Google Scholar
46.Karlsson, M.N.A., De ppert, K., Karlsson, L.S., Magnusson, M.H., Malm, J.-O., and Srinivasan, N.S., J. Nanoparticle Res. 7 (2005) p. 43.Google Scholar
47.Deppert, K., Schmidt, F., Krinke, T., Dixkens, J., and Fissan, H., J. Aerosol Sci. 27 (1996) p. S151.Google Scholar
48.Seifert, W., Borgström, M., Deppert, K., Dick, K.A., Johansson, J., Larsson, M.W., Mårtensson, T., Sköld, N., Svensson, C.P.T., Wacaser, B.A., Wallenberg, L.R., and Samuelson, L., J. Cryst. Growth 272 (2004) p. 211.Google Scholar
49.Johansson, J., Svensson, C.P.T., Mårtensson, T., Samuelson, L., and Seifert, W., J. Phys. Chem. B 109 (2005) p. 13567.Google Scholar
50.Johansson, J., Karlsson, L.S., Svensson, C.P.T., Mårtensson, T., Wacaser, B.A., Deppert, K., Samuelson, L., and Seifert, W., Nat. Mater. 5 (2006) p. 574.Google Scholar
51.Karlsson, L.S., Larsson, M.W., Malm, J.-O., Wallenberg, L.R., Dick, K.A., Deppert, K., Seifert, W., and Samuelson, L., NANO 1 (2006) p. 139.Google Scholar
52.Hiruma, K., Yazawa, M., Katsuyama, T., Ogawa, K., Haraguchi, K., and Koguchi, M., Appl. Phys. Rev. 77 (1995) p. 447.Google Scholar
53.Tsai, C.T. and Williams, R.S., J. Mater. Res. 1 (1986) p. 352.Google Scholar
54.Veresegyhazy, R., Mojzes, I., and Pecz, B., Vacuum 36 (1986) p. 547.Google Scholar
55.Veresegyhazy, R., Pecz, B., and Mojzes, I., Physica Status Solidi 94 (1986) p. K11.Google Scholar
56.Hiscocks, S.E.R. and Hume-Rothery, W., Proc. R. Soc. (London) 282 (1964) p. 318.Google Scholar
57.Jensen, L.E., Björk, M.T., Jeppesen, S., Persson, A.I., Ohlsson, B.J., and Samuelson, L., Nano Lett. 4 (2004) p. 1961.Google Scholar
58.Johansson, J., Wacaser, B.A., Dick, K.A., and Seifert, W., Nanotechnology 17 (2006) p. S355.Google Scholar
59.Koguchi, M., Kakibayashi, H., Yazawa, M., Jiruma, K., and Katsuyama, T., Jpn. J. Appl. Phys. 31 (1992) p. 2061.Google Scholar
60.Dick, K.A., Deppert, K., Karlsson, L.S., Seifert, W., Wallenberg, L.R., and Samuelson, L., Nano Lett. 6 (2006) p. 2842.Google Scholar