Skip to main content Accessibility help
×
Home
Hostname: page-component-5cfd469876-kgr8m Total loading time: 0.201 Render date: 2021-06-24T07:28:55.997Z Has data issue: true Feature Flags: { "shouldUseShareProductTool": true, "shouldUseHypothesis": true, "isUnsiloEnabled": true, "metricsAbstractViews": false, "figures": true, "newCiteModal": false, "newCitedByModal": true, "newEcommerce": true }

Article contents

Development of High-Performance Organic Thin-Film Transistors for Large-Area Displays

Published online by Cambridge University Press:  31 January 2011

Get access

Abstract

Organic thin-film transistors (OTFTs) are considered indispensable in applications requiring flexibility, large area, low processing temperature, and low cost. Key challenges to be addressed include developing solution-processable gate dielectric materials that form uniform films over large areas and exhibit excellent insulating properties, reducing contact resistance at interfaces between organic semiconductors and electrodes, and optimizing the patterning of organic semiconductors. High-performance pentacene-based OTFTs have been reported with polymeric gate dielectrics and indium tin oxide source/drain electrodes. Using such OTFT backplates, a 15-in. 1024 X 768 pixel full-color active-matrix liquid-crystal display (AMLCD) and a 4.5-in. 192 X64 pixel active-matrix organic light-emitting diode (AMOLED) have been fabricated.

Type
Research Article
Copyright
Copyright © Materials Research Society 2006

Access options

Get access to the full version of this content by using one of the access options below.

References

1Dimitrakopoulos, C.D. and Malenfant, P.R.L.Adv. Mater. 14 (2002) p.99.3.0.CO;2-9>CrossRefGoogle Scholar
2Kelley, T.W.Muyres, D.V.Baude, P.F.Smith, T.P. and Jones, T.D. in Organic and Polymeric Materials and Devices, edited by Blom, P.W.M.Greenham, N.C.Dimitrakopoulos, C.D. and Frisbie, C.D. (Mat. Res. Soc. Symp. Proc. 771, Warrendale, PA, 2003) p. 169.Google Scholar
3Pope, M. and Swenberg, C.E.Electronic Processes in Organic Crystals and Polymers, 2nd ed. (Oxford University Press, New York, 1999).Google Scholar
4Sundar, V.C.Zaumseil, J.Podzorov, V.Menard, E.Willett, R.L.Someya, T.Gershen-son, M.E., and Rogers, J.A.Science 303 (2004) p. 1644.CrossRefGoogle Scholar
5Zeis, R.Besnard, C.Siegrist, T.Schlocker-mann, C., Chi, X.L. and Kloc, C.Chem. Mater. 18 (2006) p. 244.CrossRefGoogle Scholar
6Shtein, M.Mapel, J.Benziger, J.B. and Forrest, S.R.App. Phys. Lett. 81 (2002) p.268.CrossRefGoogle Scholar
7Salleo, A.Chabinyc, M.L.Yang, M.S. and Street, R.A.App. Phys. Lett. 81 (2002) p.4383.CrossRefGoogle Scholar
8Bao, Z.Kuck, V.Rogers, J.A. and Paczkowski, M.A.Adv. Mater. 12 (2002) p.526.Google Scholar
9Necliudov, P.V.Shur, M.S.Gundlach, D.J. and Jackson, T.N.Solid-State Electron. 47 (2003) p.259.CrossRefGoogle Scholar
10Kawasaki, M.Imazeki, S.Ando, M.Sekiguchi, Y.Hirota, S.Uemura, S. and Kamata, T.Proc. AMLCD '04 (Jpn. Soc. Appl. Phys., Tokyo, 2004) p.25.Google Scholar
11Kymissis, I.Dimitrakopoulos, D. and Purushothaman, S., IEEE Trans. Electron Dev. 48 (2001) p.1060.CrossRefGoogle Scholar
12Nomoto, K.Hirai, N.Yoneya, N.Kawashima, N.Noda, M. and Kasahara, J.Proc. AMLCD '04 (Jpn. Soc. Appl. Phys., Tokyo, 2004) p.31.Google Scholar
13Kymissis, I.Akinwande, A.I. and Bulovic, V.J.Display Technol. 1 (2005) p.289.CrossRefGoogle Scholar
14Gelink, G.H.Edzer, H.Huirema, A.Veenendall, E.V.Cantatore, E.Schtijnemakers, L.Putten, J.B.P.H. Van Der, Geuns, T.C.T.Been-hakkers, M., Giesbers, J.B.Huisman, B.H.Meijer, E.J.Benito, E.M.Touwslager, F.J.Marsman, A.W.Rens, B.J.E. Van, and Leeuw, D.M. De, Nature Mater. 3 (2004) p.106.CrossRefGoogle Scholar
15Choi, H.Y.Kim, S.H. and Jang, J., Adv. Mater. 16 (2004) p.732.CrossRefGoogle Scholar
16Gundlach, D.J.Schlom, D.G.Nelson, S.F. and Jackson, T.N.Appl. Phys. Lett. 74 (1999) p.3302.CrossRefGoogle Scholar
17Chabinyc, M.L.Wong, W.S.Arias, A.C.Ready, S.R.Lujan, R.A.Daniel, J.H.Krusor, B.Apte, R.B.Salleo, A. and Street, R.A.Proc. IEEE 93 (2005) p.1491.CrossRefGoogle Scholar
18Chang, Y.T.Liou, C.H. and Wen, C.B.IEEE Circuits Dev. (Sep./Oct.) (2005) p. 8.Google Scholar
19Facchetti, A.Yoon, M.H. and Marks, T.J.Adv. Mater. 17 (2005) p. 1705 and references therein.CrossRefGoogle Scholar
20Yoon, M.H.Yan, H.Facchetti, A. and Marks, T.J.J.Am. Chem. Soc. 127 (2005) p.10388.CrossRefGoogle Scholar
21Jeong, E.J.Koo, B.W.Lee, E.K.Shin, J.H.Kang, I.N. and Lee, S.Y. unpublished.Google Scholar
22Lee, T.W.Shin, J.H.Kang, I.N.Pu, L. and Lee, S.Y. unpublished.Google Scholar
23Schroder, D.K.Semiconductor Material and Device Characterization, 2nd ed. (Wiley, New York, 1998).Google Scholar
24Nicollian, E.H. and Brews, J.R.MOS (Metal Oxide Semiconductor) Physics and Technology (Wiley, New York, 1982).Google Scholar
25Singh, T.B.Marjanović, N., Stadler, P.Auinger, M.Matt, G.J.Günes, S., Sariciftci, N.S.Schwödiauer, R., and Bauer, S.J. Appl. Phys. 85 (2004) p.5409.Google Scholar
26Park, S.Y.Park, M. and Lee, H.H.Appl. Phys. Lett. 85 (2004) p.2283.CrossRefGoogle Scholar
27Lee, S.Y.Koo, B.W.Shin, J.H.Lee, E.K.Park, H. and Kim, H.Appl. Phys. Lett. 88 162109 (2006).CrossRefGoogle Scholar
28Seshadri, K. and Frisbie, C.D.Appl. Phys. Lett. 78 (2001) p.993.CrossRefGoogle Scholar
29Koch, N.Kahn, A.Ghijsen, J.Pireaux, J.J.Schwartz, J., Johnson, R.L. and Elschner, A.Appl. Phys. Lett. 82 (2003) p.70.CrossRefGoogle Scholar
30Hong, M.P.Kim, B.S.Lee, Y.U.Song, K.K.Oh, J.H.Kim, J.H.Choi, T.Y.Ryu, M.S.Chung, K.Lee, S.Y.Koo, B.W.Shin, J.H.Jeong, E.J. and Pu, L.S.SID '05 Dig. (Soc. Inf. Display San Jose, CA, 2005) p. 23.Google Scholar
31Kelley, T.W.Baude, P.F.Gerlach, C.Ender, D.E.Muyres, D.Haase, M.A.Vogel, D.E. and Theiss, S.D.Chem. Mater. 16 (2004) p.4413.CrossRefGoogle Scholar
32Lefenfeld, M.Blanchet, G. and Rogers, J.A.Adv. Mater. 15 (2003) p.1188.CrossRefGoogle Scholar
33Ling, M.M. and Bao, Z.Chem. Mater. 16 (2004) p.4824.CrossRefGoogle Scholar
34Choi, J.H.Lee, E.S.Choi, S.H.Baik, H.K.Song, K.M.Lim, Y.S. and Lee, S.M.J. Vac. Sci. Technol. A23 (2005) p.1479.CrossRefGoogle Scholar
35Ganzorig, C.Kwak, K.J.Yagi, K. and Fujihira, M.Appl. Phys. Lett. 79 (2001) p.272.CrossRefGoogle Scholar
36Lee, T.W., Kwon, O.Kim, M.G.Park, S.H.Chung, J., Kim, S.Y.Chung, Y.Park, J.Y.Han, E.Huh, D.H.Park, J.J. and Pu, L.Appl. Phys. Lett. 87 231106 (2005).CrossRefGoogle Scholar
37Sheraw, C.D.Zhou, L.Huang, J.R.Gundlach, D.J.Jackson, T.N.Kane, M.G.Hill, I.G.Hammond, M.S.Campi, J.Greening, B.K.Francl, J. and West, J.Appl. Phys. Lett. 80 (2002) p.1088.CrossRefGoogle Scholar
38Zhou, L.Park, S.Bai, B.Sun, J.Wu, S.C.Jackson, T.N.Nelson, S.Freeman, D. and Hong, Y.IEEE Electron Dev. Lett. 26 (2005) p.640.CrossRefGoogle Scholar
39Graczyk, T. and Hornof, V.J.Polym. Sci., Part A: Polym. Chem. 26 (1988) p.2019.CrossRefGoogle Scholar
40Lee, S.Koo, B.W.Jeong, E.J.Lee, E.Kim, S.Kim, J.Lee, H.Ko, I.Lee, Y.Chun, Y.Oh, T.Kang, S.Pu, L. and Kim, J. to be presented at SID ”06 (Soc. Inf. Display 2006).Google Scholar

Send article to Kindle

To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Development of High-Performance Organic Thin-Film Transistors for Large-Area Displays
Available formats
×

Send article to Dropbox

To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

Development of High-Performance Organic Thin-Film Transistors for Large-Area Displays
Available formats
×

Send article to Google Drive

To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

Development of High-Performance Organic Thin-Film Transistors for Large-Area Displays
Available formats
×
×

Reply to: Submit a response

Please enter your response.

Your details

Please enter a valid email address.

Conflicting interests

Do you have any conflicting interests? *