Hostname: page-component-59f8fd8595-gl4p7 Total loading time: 0 Render date: 2023-03-21T18:59:25.725Z Has data issue: true Feature Flags: { "useRatesEcommerce": false } hasContentIssue true

Cellulose Biocomposites—From Bulk Moldings to Nanostructured Systems

Published online by Cambridge University Press:  31 January 2011

Get access


Cellulose biocomposites are widely used in industry as a low-cost engineering material with plant fiber reinforcement. However, chemical and microstructural heterogeneity causes low strength, low strain-to-failure, high moisture sensitivity, and odor and discoloration problems. Efforts toward improved performance through fiber orientation control, increased fiber lengths, and biopolymer use are reviewed. Interfacial strength control and moisture sensitivity are remaining challenges. As an attractive alternative reinforcement, high-quality cellulose nanofibers obtained by wood pulp fiber disintegration can be prepared at low cost. These nanofibers have high length/diameter ratios, diameters in the 5–15 nm range, and intrinsically superior physical properties. Wood cellulose nanofibers are interesting as an alternative reinforcement to more expensive nanoparticles, such as carbon nanotubes. Nanopaper and polymer matrix nanocomposites based on cellulose nanofiber networks show high strength, high work-of-fracture, low moisture adsorption, low thermal expansion, high thermal stability, high thermal conductivity, exceptional barrier properties, and high optical transparency. The favorable mechanical performance of bioinspired foams and low-density aerogels is reviewed. Future applications of cellulose biocomposites will be extended from the high-volume/low-cost end toward high-tech applications, where cellulose properties are fully exploited in nanostructured materials.

Research Article
Copyright © Materials Research Society 2010

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)


1.Clemons, C., For. Prod. J. 52, 10 (2002).Google Scholar
2.Rowell, R.M., J. Polym. Environ. 15, 229 (2007).CrossRefGoogle Scholar
3.Bledski, A.K., Letman, M., Viksne, A., Rence, L., Composites Part A 36, 789 (2005).CrossRefGoogle Scholar
4.Lu, J.Z., Wu, Q.L., McNabb, H.S., Wood Fiber Sci. 32, 88 (2000).Google Scholar
5.Bledzki, A.K., Faruk, O., Compos. Sci. Technol. 64, 693 (2004).CrossRefGoogle Scholar
6.Bledzki, A.K., Gassan, J., Prog. Polym. Sci. 24, 221 (1999).CrossRefGoogle Scholar
7.Saheb, D.N., Jog, J.P., Adv. Polym. Technol. 18, 351 (1999).3.0.CO;2-X>CrossRefGoogle Scholar
8.Peijs, T., Mater. Technol. 15, 281 (2000).CrossRefGoogle Scholar
9.John, M.J., Thomas, S., Carbohydr. Polym. 71, 343 (2008).CrossRefGoogle Scholar
10.Schlosser, T., Knothe, J., Kunstoffe: Plast Eur. 87, 1148 (1997).Google Scholar
11.Mieck, K.P., Lutzkendorf, R., Reussmann, T., Polym. Compos. 17, 873 (1996).CrossRefGoogle Scholar
12.Garkhail, S.K., Heijenrath, R.W.H., Peijs, T., Appl. Compos. Mater. 7, 351 (2000).CrossRefGoogle Scholar
13.Mohanty, A.K., Misra, M., Hinrichsen, G., Macromol. Mater. Eng. 276, 1 (2000).3.0.CO;2-W>CrossRefGoogle Scholar
14.Satyanarayana, K.G., Arizaga, G.G.C., Wypych, F., Prog. Polym. Sci. 34, 982 (2009).CrossRefGoogle Scholar
15.Oksman, K., Skrifvars, M., Selin, J.F., Compos. Sci. Technol. 63, 1317 (2003).CrossRefGoogle Scholar
16.Nishino, T., Nakamae, K., Hirao, K., Kotera, M., Compos. Sci. Technol. 63, 1281 (2003).CrossRefGoogle Scholar
17.Bodros, E., Pillin, I., Montrelay, N., Baley, C.Compos. Sci. Technol. 67, 462 (2007).CrossRefGoogle Scholar
18.Barkoula, N.M., Garkhail, S.K., Peijs, T., Ind. Crop. Prod. 31, 34 (2010).CrossRefGoogle Scholar
19.Averous, L., Boquillon, N., Carbohydr. Polym. 56, 111 (2004).CrossRefGoogle Scholar
20.O'Donnell, A., Dweib, M.A., Wool, R.P., Compos. Sci. Technol. 64, 1135 (2004).CrossRefGoogle Scholar
21.Bisanda, E.T.N., Ansell, M.P., J. Mater. Sci. 27, 1690 (1992).CrossRefGoogle Scholar
22.Gerngross, T.U., Slater, S.C., Sci. Am. 283, 36 (2000).CrossRefGoogle Scholar
23.Shen, L., Patel, M.K., J. Polym. Environ. 16, 154 (2008).CrossRefGoogle Scholar
24.Corbiere-Nicollier, T., Gfeller-Laban, B., Lundquist, L., Leterrier, Y., Månson, J.-A.E., Jollieta, O., Resour. Conserv. Recycl. 33, 267 (2001).CrossRefGoogle Scholar
25.George, J., Klompen, E.T.J., Peijs, T., Adv. Compos. Lett. 10, 81 (2001).Google Scholar
26.Bellmann, K., Khare, A., Technovation 19, 721 (1999).CrossRefGoogle Scholar
27.Cabrera, N., Alcock, B., Loos, J., Peijs, T., Proc. Inst. Mech. Eng. Part L. J. Mater. Des. Appl. 218, 145 (2004).Google Scholar
28.Alcock, B., Cabrera, N.O., Barkoula, N.M., Spoelstra, A.B., Loos, J., Peijs, T., Composites Part A 38, 147 (2007).CrossRefGoogle Scholar
29.Alcock, B., Cabrera, N.O., Barkoula, N.M., Peijs, T., Compos. Sci. Technol. 66, 1724 (2006).CrossRefGoogle Scholar
30.Alcock, B., Cabrera, N.O., Barkoula, N.M., Reynolds, C.T., Govaert, L.E., Peijs, T., Compos. Sci. Technol. 67, 2061 (2007).CrossRefGoogle Scholar
31.Keller, A., Compos. Sci. Technol. 63, 1307 (2003).CrossRefGoogle Scholar
32.van den Oever, M.J.A., Snijder, M.H.B., J. Appl. Polym. Sci. 110, 1009 (2008).CrossRefGoogle Scholar
33.Barkoula, N.M., Garkhail, S.K., Peijs, T., J. Reinf. Plast. Compos. (September 16, 2009); DOI: 10.1177/0731684409104465.Google Scholar
34.Stamboulis, A., Baillie, C.A., Garkhail, S.K., van Melick, H.G.H., Peijs, T.Appl. Compos. Mater. 7, 273 (2000).CrossRefGoogle Scholar
35.Stamboulis, A., Baillie, C.A., Peijs, T., Composites Part A 32, 1105 (2001).CrossRefGoogle Scholar
36.Hapuarachchi, T.D., Ren, G., Fan, M., Hogg, P.J., Peijs, T., Appl. Compos. Mater. 14, 251 (2007).CrossRefGoogle Scholar
37.Kozlowski, R., Wladyka-Przybylak, M., Polym. Adv. Technol. 19, 446 (2008).CrossRefGoogle Scholar
38.Mieck, K.P., Nechwatal, A., Knobelsdorf, C., Angew. Makromol. Chem. 224, 73 (1995).CrossRefGoogle Scholar
39.Mieck, K.P., Nechwatal, A., Knobelsdorf, C., Angew. Makromol. Chem. 225, 37 (1995).CrossRefGoogle Scholar
40.Peijs, T., Garkhail, S., Heijenrath, R., van den Oever, M., Bos, H., Macromol. Symp. 127, 193 (1998).CrossRefGoogle Scholar
41.Snijder, M.H.B., Bos, H.L., Compos. Interfaces 7, 69 (2000).CrossRefGoogle Scholar
42.George, J., Sreekala, M.S., Thomas, S., Polym. Eng. Sci. 41, 1471 (2001).CrossRefGoogle Scholar
43.Mohanty, A.K., Misra, M., Drzal, L.T., Compos. Interfaces 8, 313 (2001).CrossRefGoogle Scholar
44.Nechwatal, A., Reussmann, T., Bohm, S., Richter, E., Adv. Eng. Mater. 7, 68 (2005).CrossRefGoogle Scholar
45.Heijenrath, R., Peijs, T., Adv. Compos. Lett. 5, 81 (1996).Google Scholar
46.Bos, H.L., van den Oever, M.J.A., Peters, O.C.J.J., J. Mater. Sci. 37, 1683 (2002).CrossRefGoogle Scholar
47.van den Oever, M.J.A., Bos, H.L., Molenveld, K., Angew. Makromol. Chem. 272, 71 (1999).3.0.CO;2-R>CrossRefGoogle Scholar
48.Gassan, J., Bledzki, A.K., Compos. Sci. Technol. 59, 1303 (1999).CrossRefGoogle Scholar
49.Tserki, V., Zafeiropoulos, N.E., Simon, F., Panayiotou, C., Composites Part A 36, 1110 (2005).CrossRefGoogle Scholar
50.Belgacem, M.N., Gandini, A., Compos. Interfaces 12, 41 (2005).CrossRefGoogle Scholar
51.Bos, H.L., Mussig, J., van den Oever, M.J.A., Composites Part A 37, 1591 (2006).CrossRefGoogle Scholar
52.Nishino, T., Arimoto, N., Biomacromolecules 8, 2712 (2007).CrossRefGoogle Scholar
53.Qin, C., Soykeabkaew, N., Xiuyuan, N., Peijs, T., Carbohydr. Polym. 71, 458 (2008).CrossRefGoogle Scholar
54.Soykeabkaew, N., Arimoto, N., Nishino, T., Peijs, T., Compos. Sci. Technol. 68, 2201 (2008).CrossRefGoogle Scholar
55.Soykeabkaew, N., Sian, C., Gea, S., Nishino, T., Peijs, T., Cellulose 16, 435 (2009).CrossRefGoogle Scholar
56.Goutianos, S., Peijs, T., Adv. Compos. Lett. 12, 237 (2003).Google Scholar
57.Goutianos, S., Peijs, T., Nystrom, B., Skrifvars, M., Appl. Compos. Mater. 13, 199 (2006).CrossRefGoogle Scholar
58.Madsen, B., Hoffmeyer, P., Lilholt, H., Composites Part A 38, 2204 (2007).CrossRefGoogle Scholar
59.van den Oever, M.J.A., Bos, H.L., Adv. Compos. Lett. 7, 81 (1998).Google Scholar
60.Andersons, J., Sparnins, E., Joffe, R., Wallström, L., Compos. Sci. Technol. 65, 693 (2005).CrossRefGoogle Scholar
61.Garkhail, S., Wieland, B., George, J., Soykeabkaew, N., Peijs, T., J. Mater. Sci. 44, 510 (2009).CrossRefGoogle Scholar
62.Gea, S., Bilotti, E., Reynolds, C.T., Soykeabkeaw, N., Peijs, T., Mater. Lett. (January 2010); DOI: 10.1016/j.matlet.2010.01.042.Google Scholar
63.Eichhorn, S.J., Dufresne, A., Aranguren, M., Marcovich, E., Capadona, J.R., Rowan, S.J., Weder, C., Thielemans, W., et al. J. Mater. Sci. (2009); DOI: 10.1007/s10853–009–3874–0.Google Scholar
64.Sakurada, I., Nukushina, Y., Ito, I., J. Polym. Sci. 57, 651 (1962).CrossRefGoogle Scholar
65.Sturcová, A., Davies, G.R., Eichhorn, S.J., Biomacromolecules 6, 1055 (2005).CrossRefGoogle Scholar
66.Kroon-Batenburg, L.M.J., Kroon, J., Northolt, M.G., Polym. Commun. 27, 290 (1986).Google Scholar
67.Bergenstråhle, M., Berglund, L.A., Mazeau, K.J., Phys. Chem. B 111, 9138 (2007).CrossRefGoogle Scholar
68.Nishiyama, Y., J. Wood Sci. 55, 241 (2009).CrossRefGoogle Scholar
69.Wu, Q.J., Henriksson, M., Liu, X., Berglund, L.A., Biomacromolecules 8, 3687 (2007).CrossRefGoogle Scholar
70.Sternstein, S.S., Zhu, A.J., Macromolecules 35, 7262 (2002).CrossRefGoogle Scholar
71.Gousse, C., Chanzy, H., Excoffier, G., Soubeyranda, L., Fleur, E., Polymer 43, 2645 (2002).CrossRefGoogle Scholar
72.Lonnberg, H., Fogelstrom, L., Samir, M.A.S.A., Berglund, L., Malmström, E., Hult, A., Eur. Polym. J. 44, 2991 (2008).CrossRefGoogle Scholar
73.Bergenstråhle, M., Mazeau, K., Berglund, L.A., Eur. Polym. J. 44, 3662 (2008).CrossRefGoogle Scholar
74.Favier, V., Chanzy, H., Cavaille, J.Y., Macromolecules 28, 6365 (1995).CrossRefGoogle Scholar
75.Favier, V., Canova, G.R., Cavaille, J.Y., Chanzy, H., Dufresne, A., Gauthier, C., Polym. Adv. Technol. 6, 351 (1995).CrossRefGoogle Scholar
76.Samir, M.A.S.A., Alloin, F., Dufresne, A., Biomacromolecules 6, 612 (2005).CrossRefGoogle Scholar
77.Turbak, A.R., Snyder, F.W., Sandberg, K.R., J. Appl. Polym. Sci. 37, 813 (1983).Google Scholar
78.Nakagaito, A.N., Yano, H., Appl. Phys. A 80, 155 (2005).CrossRefGoogle Scholar
79.Henriksson, M., Henriksson, G., Berglund, L.A., Lindström, T., Eur. Polym. J. 43, 3434 (2007).CrossRefGoogle Scholar
80.Wågberg, L., Decher, G., Norgren, M., Lindström, T., Ankerfors, M., Axnas, K., Langmuir 24, 784 (2008).CrossRefGoogle Scholar
81.Hult, E.L., Iversen, T., Sugiyama, J., Cellulose 10, 103 (2003).CrossRefGoogle Scholar
82.Saito, T., Hirota, M., Tamura, N., Kimura, S., Fukuzumi, H., Heux, L., Isogai, A., Biomacromolecules 10, 1992 (2009).CrossRefGoogle Scholar
83.Henriksson, M., Berglund, L.A., Isaksson, P., Lindstrom, T., Nishino, T., Biomacromolecules 9, 1579 (2008).CrossRefGoogle Scholar
84.Bodig, J., Jayne, B.A., Mechanics of Wood and Wood Composites (Krieger Publishing, Florida, 1993), p. 525.Google Scholar
85.Mihranyan, A., Llagostera, A.P., Karmhag, R., Strømmec, M., Ek, R., Int. J. Pharm. 269, 433 (2004).CrossRefGoogle Scholar
86.Bergenstrahle, M., Wohlert, J., Larsson, P.T., Mazeau, K., Berglund, L.A., J. Phys. Chem. B 112, 2590 (2008).CrossRefGoogle Scholar
87.Nogi, M., Abe, K., Handa, K., Nakatsubo, F., Ifuku, S., Yano, H., Appl. Phys. Lett. 89, 233123 (2006).CrossRefGoogle Scholar
88.Henriksson, M., Berglund, L.A., J. Appl. Polym. Sci. 106, 2817 (2007).CrossRefGoogle Scholar
89.Dufresne, A., Dupeyre, D., Vignon, M.R., J. Appl. Polym. Sci. 76, 2080 (2000).3.0.CO;2-U>CrossRefGoogle Scholar
90.Svagan, A.J., Samir, M.A.S.A., Berglund, L.A., Biomacromolecules 8, 2556 (2007).CrossRefGoogle Scholar
91.Zhou, Q., Malm, E., Nilsson, H., Larsson, P.T., Iversen, T., Berglund, L.A., Bulone, V., Soft Matter 5, 4124 (2009).CrossRefGoogle Scholar
92.Nogi, M., Ifuku, S., Abe, K., Handa, K., Nakagaito, A.N., Yano, H., Appl. Phys. Lett. 88, 13 (2006).CrossRefGoogle Scholar
93.Hori, R., Wada, M., Cellulose 12, 479 (2005).CrossRefGoogle Scholar
94.Antal, M.J., Varhegyi, G., Jakab, E., Ind. Eng. Chem. Res. 37, 1267 (1998).CrossRefGoogle Scholar
95.Fukuzumi, H., Saito, T., Wata, T., Kumamoto, Y., Isogai, A., Biomacromolecules 10, 162 (2009).CrossRefGoogle Scholar
96.Svagan, A.J., Samir, M.A.S.A., Berglund, L.A., Adv. Mater. 20, 1263 (2008).CrossRefGoogle Scholar
97.Pierre, A.C., Pajonk, G.M., Chem. Rev. 102, 4243 (2002).CrossRefGoogle Scholar
98.Pääkkö, M., Vapaavuori, J., Silvennoinen, R., Kosonen, H., Ankerfors, M., Lindstrom, T., Berglund, L.A., Ikkala, O., Soft Matter 4, 2492 (2008).CrossRefGoogle Scholar
99.Mihranyan, A., Nyholm, L., Bennett, A.E.G., Stromme, M., J. Phys. Chem. B 112, 12249 (2008).CrossRefGoogle Scholar
100.Nystrom, G., Razaq, A., Stromme, M., Nyholm, L., Mihranyan, A., Nano Lett. 9, 3635 (2009).CrossRefGoogle Scholar