Hostname: page-component-7bb8b95d7b-cx56b Total loading time: 0 Render date: 2024-09-08T11:47:00.211Z Has data issue: false hasContentIssue false

Carbon Nanotube Electroactive Polymer Materials: Opportunities and Challenges

Published online by Cambridge University Press:  31 January 2011

Get access

Abstract

Carbon nanotubes (CNTs) with macroscopically ordered structures (e.g., aligned or patterned mats, fibers, and sheets) and associated large surface areas have proven promising as new CNT electroactive polymer materials (CNT-EAPs) for the development of advanced chemical and biological sensors. The functionalization of CNTs with many biological species to gain specific surface characteristics and to facilitate electron transfer to and from them for chemical- and bio-sensing applications is an area of intense research activity.

Mechanical actuation generated by CNT-EAPs is another exciting electroactive function provided by these versatile materials. Controlled mechanical deformation for actuation has been demonstrated in CNT mats, fibers, sheets, and individual nanotubes. This article summarizes the current status and technological challenges for the development of electrochemical sensors and electromechanical actuators based on carbon nanotube electroactive materials.

Type
Research Article
Copyright
Copyright © Materials Research Society 2008

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1.Marsh, H., Introduction to Carbon Science (Butterworth, London, 1989).Google Scholar
2.Kroto, H.W., Heath, J.R., Obrien, S.C., Curl, R.F., Smalley, R.E., Nature 318, 162 (1985).CrossRefGoogle Scholar
3.Hirsch, A., The Chemistry of the Fullerenes (Thieme, Stuttgart, 1994).CrossRefGoogle Scholar
4.Iijima, S., Nature 56, 354 (1991).Google Scholar
5.Dai, L., Ed., Carbon Nanotechnology: Recent Developments in Chemistry, Physics, Materials Science and Device Applications (Elsevier, Amsterdam, 2006).Google Scholar
6.Wallace, G.G., Spinks, G.M., Teasdale, P.T., Conductive Electroactive Polymers: Intelligent Materials Systems (Technomic, Lancaster, PA, 1997).Google Scholar
7.Dai, L., Intelligent Macromolecules for Smart Devices: From Materials Synthesis to Device Applications (Springer, Berlin, 2004).Google Scholar
8.Baughman, R.H., Zakhidov, A.A., de Heer, W.A., Science 297, 787 (2002).CrossRefGoogle Scholar
9.Dresselhaus, M.S., Dai, H., MRS Bull. 29, 237 (2004).Google Scholar
10.Liu, J., Fan, S.S., Dai, H.H., MRS Bull. 29, 244 (2004).CrossRefGoogle Scholar
11.McEuen, P.L., Park, J.Y., MRS Bull. 29, 272 (2004).CrossRefGoogle Scholar
12.Dai, L., Patil, A., Gong, X.Y., Guo, Z.X., Liu, L.Q., Liu, Y., Zhu, D.B., Chem. Phys. Chem. 4, 1150 (2003) and references cited therein.CrossRefGoogle Scholar
13.Yan, Y., Chan-Park, M.B., Zhang, Q., Small 3, 24 (2007) and reference cited therein.CrossRefGoogle Scholar
14.Wei, B.Q., Vajtai, R., Jung, Y., Ward, J., Zhang, R., Ramanath, G., Ajayan, P.M., Nature 416, 495 (2002).CrossRefGoogle Scholar
15.Li, W.Z., Xie, S.S., Qian, L.X., Chang, B.H., Zou, B.S., Zhou, W.Y., Zhao, R.A., and Wang, G., Science 274, 1701 (1996).CrossRefGoogle Scholar
16.Pan, Z.W., Xie, S.S., Chang, B.H., Wang, C.Y., Lu, L., Liu, W., Zhou, M.Y., Li, W.Z., Nature 394, 631 (1998).CrossRefGoogle Scholar
17.Fan, S., Chapline, M.G., Franklin, N.R., Tombler, T.W., Cassell, A.M., Dai, H.J., Science 283, 512 (1999).CrossRefGoogle Scholar
18.Rao, C.N.R., Sen, R., Satishkumar, B.C., Govindaraj, A., Chem. Commun. 15, 1525 (1998).Google Scholar
19.Ren, Z.F., Huang, Z.P., Xu, J.W., Wang, J.H., Bush, P., Siegal, M.P., Provencio, P.N., Science 282, 1105 (1998).CrossRefGoogle Scholar
20.Huang, S., Dai, L., Mau, A.W.H., J. Phys. Chem. B 103, 4223 (1999).CrossRefGoogle Scholar
21.Yang, Y., Huang, S., He, H.Z., Mau, A.W.H., Dai, L., J. Am. Chem. Soc. 121, 10832 (1999).Google Scholar
22.Patil, A., Ohashi, T., Buldum, A., Dai, L., Appl. Phys. Lett. 89, 103103 (2006).Google Scholar
23.Hata, K., Hata, K., Futaba, D.N., Mizuno, K., Namai, T., Yumura, M., Iijima, S., Science 306, 1362 (2004).CrossRefGoogle Scholar
24.Zhang, G., Mann, D., Zhang, L., Javey, A., Li, Y., Yenilmez, E., Wang, Q., McVittie, J. P., Nishi, Y., Gibbons, J., Dai, H., Proc. Natl. Acad. Sci. USA 102, 16141 (2005).Google Scholar
25.Eres, G., Kinkhabwala, A.A., Cui, H., Geohegan, D.B., Puretzky, A.A., Lowndes, D.H., J. Phys. Chem. B 109, 16684 (2005).CrossRefGoogle Scholar
26.Iwasaki, T., Zhong, G., Aikawa, T., Yoshida, T., Kawarada, H., J. Phys. Chem. B 109, 19556 (2005).Google Scholar
27.Xu, Y.Q., Flor, E., Kim, M.J., Hamadani, B., Schmidt, H., Smalley, R.E., Hauge, R.H., J. Am. Chem. Soc. 128, 6560 (2006).CrossRefGoogle Scholar
28.Cantoro, M., Hofmann, S., Pisana, S., Scardaci, V., Parvez, A., Ducati, C., Ferrari, A.C., Blackburn, A.M., Wang, K.Y., Robertson, J., Nano Lett. 6, 1107 (2006).Google Scholar
29.Murakami, Y., Chiasi, S., Miyauchi, Y., Hu, M., Ogura, M., Okubo, T., Maruyama, S., Chem. Phys. Lett. 385, 298 (2004).CrossRefGoogle Scholar
30.Zhang, L., Tan, Y.Q., Resasco, D.E., Chem. Phys. Lett. 422, 198 (2006).CrossRefGoogle Scholar
31.Chakrabarti, S., Nagasaka, T., Yoshikawa, Y., Pan, L., Nakayama, Y., Jpn. J. Appl. Phys., 45, L720 (2006).CrossRefGoogle Scholar
32.Zhong, G.F., Iwasaki, T., Honda, K., Furukawa, Y., Ohdomari, I., Kawarada, H., Jpn. J. Appl. Phys. 44, 1558 (2005).CrossRefGoogle Scholar
33.Yang, J., Qu, L.T., Zhao, Y., Zhang, Q.H., Dai, L.M., Baur, J.W., Maruyama, B., Vaia, R.A., Shin, E., Murray, P.T., Luo, H.X., Guo, Z.X., J. Nanosci. Nanotechnol. 7, 1573 (2007).Google Scholar
34.Qu, L.T., Dai, L., J. Mater. Chem. 17, 3401 (2007).CrossRefGoogle Scholar
35.Yang, J., Dai, L., Vaia, R.A., J. Phys. Chem. B 107, 12387 (2003).CrossRefGoogle Scholar
36.Li, Y., Li, Y., Mann, D., Rolandi, M., Kim, W., Ural, A., Hung, S., Javey, A., Cao, J., Wang, D., Yenilmez, E., Wang, Q., Gibbons, J.F., Nishi, Y., Dai, H., Nano Lett. 4, 317 (2004).CrossRefGoogle Scholar
37.Li, Y., Peng, S., Mann, D., Cao, J., Tu, R., Cho, K.J., Dai, H., J. Phys. Chem. B 109, 6968 (2005).CrossRefGoogle Scholar
38.Bachilo, S.M., Balzano, L., Herrera, J.F., Pompeo, F., Resasco, D.E., Weisman, R.B., J. Am. Chem. Soc. 125, 11186 (2003).CrossRefGoogle Scholar
39.Krupke, R., Hennrich, F., Löhneysen, H.v., Kappes, M.M., Science 301, 344 (2003).CrossRefGoogle Scholar
40.Chattopadhyay, D., Galeska, I., Papadimitrakopoulos, F., J. Am. Chem. Soc. 125, 3370 (2003).CrossRefGoogle Scholar
41.Zheng, M., Zheng, M., Jagota, A., Strano, M.S., Santos, A.P., Barone, P., Chou, S.G., Diner, B.A., Dresselhaus, M.S., McLean, R.S., Onoa, G.B., Samsonidze, G.G., Semke, E.D., Usrey, M., Walls, D.J., Science 302, 1545 (2003).CrossRefGoogle Scholar
42.Maeda, Y., Kimura, S., Kanda, M., Hirashima, Y., Hasegawa, T., Wakahara, T., Lian, Y., Nakahodo, T., Tsuchiya, T., Akasaka, T., Lu, J., Zhang, X., Gao, Z., Yu, Y., Nagase, S., Kazaoui, S., Minami, N., Shimizu, T., Tokumoto, H., Saito, R., J. Am. Chem. Soc. 127, 10287 (2005).Google Scholar
43.Banerjee, S., Wong, S., Nano Lett. 8, 1445 (2004).Google Scholar
44.Strano, M.S., Dyke, C.A., Usrey, M.L., Barone, P.W., Allen, M.J., Shan, H., Kittrell, C., Hauge, R.H., Tour, J.M., Smalley, R.E., Science 301, 1519 (2003).CrossRefGoogle Scholar
45.Kamaras, K., Itkis, M.E., Hu, H., Zhao, B., Haddon, R.C., Science 301, 1501 (2003).Google Scholar
46.Chen, Z., Du, X., Du, M.H., Rancken, C.D., Cheng, H.P., Rinzler, A.G., Nano Lett. 3, 1245 (2003).Google Scholar
47.Arnold, M.S., Green, A.A., Hulvat, J.F., Stupp, S.I., Hersam, M.C., Nat. Nanotech. 1, 60 (2006).CrossRefGoogle Scholar
48.Collins, P., Arnold, M.S., Avouris, P., Science 292, 706 (2001).CrossRefGoogle Scholar
49.An, L., Fu, Q., Lu, C., Liu, J., J. Am. Chem. Soc. 126, 10520 (2004).CrossRefGoogle Scholar
50.Zhang, G., Qi, P., Wang, X., Lu, Y., Li, X., Tu, R., Bangsaruntip, S., Mann, D., Zhang, L., Dai, H., Science 314, 974 (2006).Google Scholar
51.Zhang, M., Atkinson, K., Baughman, R., Science 306, 1358 (2004).Google Scholar
52.Zhang, M., Fang, S., Zakhidov, A.A., Lee, S.B., Aliev, A.E., Williams, C.D., Atkinson, K.R., Baughman, R.H., Science 309, 1215 (2005).CrossRefGoogle Scholar
53.Vigolo, B., Pénicaud, A., Coulon, C., Sauder, C., Pailler, R., Journet, C., Bernier, P., Poulin, P., Science 290, 1331 (2000).CrossRefGoogle Scholar
54.Jiang, K., Li, Q., Fan, S., Nature 419, 801 (2002).CrossRefGoogle Scholar
55.Ericson, L.M., Fan, H., Peng, H., Davis, V.A., Zhou, W., Sulpizio, J., Wang, Y., Booker, R., Vavro, J., Guthy, C., Parra-Vasquez, A.N.G., Kim, M.J., Ramesh, S., Saini, R.K., Kittrell, C., Lavin, G., Schmidt, H., Adams, W.W., Billups, W.E., Pasquali, M., Hwang, W.F., Hauge, R.H., Fischer, J.E., Smalley, R.E., Science 305, 1447 (2004).Google Scholar
56.Li, Y., Kinloch, I.A., Windle, A.H., Science 304, 274 (2004).Google Scholar
57.Ci, L., Punbusayakul, N., Wei, J., Vajtai, R., Talapatra, S., Ajayan, P.M., Adv. Mater. 19, 1719 (2007).Google Scholar
58.Kam, N.W.S., Liu, Z., Dai, H., Angew. Chem. Int. Ed. 45, 577 (2006).Google Scholar
59.Kam, N., O'Connell, M., Wisdom, J.A., Dai, H.J., Proc. Natl. Acad. Sci. USA 102, 11600 (2005).CrossRefGoogle Scholar
60.Bianco, A., Hoebeke, J., Godefroy, S., Chaloin, O., Pantarotto, D., Briand, J.-P., Muller, S., Prato, M., Partidos, C.D., J. Am. Chem. Soc. 127, 58 (2005).CrossRefGoogle Scholar
61.Cherukuri, P., Bachilo, S.M., Litovsky, S.H., Weisman, R.B., J. Am. Chem. Soc. 126, 15638 (2004).CrossRefGoogle Scholar
62.Liu, Y., Wu, D., Zhang, W., Jiang, X., He, C., Chung, T.S., Goh, S.H., Leong, K.W., Angew. Chem. Int. Ed. 44, 4782 (2005).CrossRefGoogle Scholar
63.Lu, Q., Moore, J.M., Huang, G., Mount, A.S., Rao, A.M., Larcom, L.L., Ke, P.C., Nano Lett. 4, 2473 (2004).CrossRefGoogle Scholar
64.He, P., Dai, L., Biomedical and Biological Nanotechnology, Lee, J., Lee, A., Eds., 1, 175, in The Handbook of BioMEMS and Bio-Nanotechnology, M. Ferrari, Ed. (Kluwer Academic, London, 2005).Google Scholar
65.Kong, J., Franklin, N.R., Zhou, C., Chapline, M.G., Peng, S., Cho, K., Dai, H., Science 287, 622 (2000).Google Scholar
66.Kong, J., Chapline, M.G., Dai, H., Adv. Mater. 13, 1384 (2001).3.0.CO;2-8>CrossRefGoogle Scholar
67.Collins, P.G., Bradley, K., Ishigami, M., Zettl, A., Science 287, 1801 (2000).Google Scholar
68.Adu, C.K.W., Sumanasekera, G.U., Pradhan, B.K., Romero, H.E., Eklund, P.C., Chem. Phys. Lett. 337, 31 (2001).CrossRefGoogle Scholar
69.Romero, H.E., Bolton, K., Rosén, A., Eklund, P.C., Science 307, 89 (2005).CrossRefGoogle Scholar
70.Modi, A., Koratkar, N., Lass, E., Wei, B., Ajayan, P.M., Nature 424, 171 (2003).Google Scholar
71.Qu, L., Dai, L., Chem. Commun. 37, 3859 (2007).CrossRefGoogle Scholar
72.Wei, C., Dai, L., Roy, A., Tolle, T.B., J. Am. Chem. Soc. 128, 1412 (2006).CrossRefGoogle Scholar
73.Tasis, D., Tagmatarchis, N., Bianco, A., Prato, M., Chem. Rev. 106, 1105 (2006).CrossRefGoogle Scholar
74.Jung, Y.J., Kar, S., Talapatra, S., Soldano, C., Viswanathan, G., Li, X., Yao, Z., Ou, F.S., Avadhanula, A., Vajtai, R., Curran, S., Nalamasu, O., Ajayan, P.M., Nano Lett. 6, 413 (2006).CrossRefGoogle Scholar
75.Bullis, K., MIT Technol. Rev. (March 7, 2006); www.techreview.com/Nanotech/16516/page1/.Google Scholar
76.Yurdumakan, B., Raravikar, N.R., Ajayan, P.M., Dhinojwala, A., Chem. Commun. 30, 3799 (2005).Google Scholar
77.Ge, L., Sethi, S., Ci, L., Ajayan, P.M., Dhinojwala, A., PNAS 104, 10792 (2007).Google Scholar
78.Qu, L., Dai, L., Adv. Mater. 19, 3844 (2007).Google Scholar
79.Valcárcel, M., Simonet, B.M., Cárdenas, S., Suárez, B., Anal. Bioanal. Chem. 382, 1783 (2005).CrossRefGoogle Scholar
80.Zhao, G., Zhang, L., Wei, X., Yang, Z., Electrochem. Commun. 5, 825 (2003).CrossRefGoogle Scholar
81.Wang, J., Li, M., Shi, Z., Li, N., Gu, Z., Anal. Chem. 74, 1993 (2002).Google Scholar
82.Gooding, J.J., Wibowo, R., Liu, J.Q., Yang, W., Losic, D., Orbons, S., Mearns, F.J., Shapter, J.G., Hibbert, D.B., J. Am. Chem. Soc. 125, 9006 (2003).Google Scholar
83.Gao, M., Huang, S., Dai, L., Wallace, G., Gao, R., Wang, Z., Angew. Chem. Int. Ed. 39, 3664 (2000).3.0.CO;2-Y>CrossRefGoogle Scholar
84.Gao, M., Dai, L., Wallace, G.G., Electroanalysis 15, 1089 (2003).Google Scholar
85.Yasuzawa, M., Kunugi, A., Electrochem. Commun. 1, 459 (1999).CrossRefGoogle Scholar
86.Qu, L., Zhao, Y., Dai, L., Small 8–9, 1052 (2006).CrossRefGoogle Scholar
87.Wang, J., Musameh, M., Lin, Y., J. Am. Chem. Soc, 125, 2408 (2003).Google Scholar
88.Luong, J.H.T., Hrapovic, S., Wang, D., Bensebaa, F., Simard, B., Electroanalysis 16, 132 (2004).CrossRefGoogle Scholar
89.Lin, Y., Lu, F., Tu, Y., Ren, Z., Nano Lett. 4, 191 (2004).CrossRefGoogle Scholar
90.Tu, Y., Lin, Y., Ren, Z., Nano Lett. 3, 107 (2003).Google Scholar
91.Tu, Y., Huang, Z.P., Wang, D.Z., Wen, J.G., Ren, Z.F., Appl. Phys. Lett. 80, 4018 (2002).Google Scholar
92.Yu, X., Chattopadhyay, D., Galeska, I., Papadimitrakopoulos, F., Rusling, J.F., Electrochem. Commun. 5, 408 (2003).Google Scholar
93.Patolsky, F., Weizmann, Y., Willner, I., Angew. Chem. Int. Ed. 43, 2113 (2004).CrossRefGoogle Scholar
94.Xu, Y., Jiang, Y., Cai, H., He, P., Fang, Y., Anal. Chim. Acta 516, 19 (2004) and references therein.Google Scholar
95.Wang, J., Liu, G., Jan, M.R., J. Am. Chem. Soc. 126, 3010 (2004) and references therein.CrossRefGoogle Scholar
96.He, P., Dai, L., Chem. Commun. 3, 348 (2004).Google Scholar
97.Koehne, J., Meyyappan, M., Nanotechnology 14, 1239 (2003) and references therein.CrossRefGoogle Scholar
98.Yeh, I.C., Hummer, G., Proc. Natl. Acad. Sci. USA 17, 12177 (2004).Google Scholar
99.An, Y.H., Song, S.M., Mol. Cell. Toxicol. 2, 279 (2006).Google Scholar
100.Hinds, B.J., Chopra, N., Rantell, T., Andrews, R., Gavalas, V., Bachas, L.G., Science 303, 62 (2004).Google Scholar
101.Majumder, M., Chopra, N., Andrews, R., Hinds, B.J., Nature 438, 44 (2005).CrossRefGoogle Scholar
102.Dai, H., Hafner, J.H., Rinzler, A.G., Colbert, D.T., Smalley, R.E., Nature 384, 147 (1996).Google Scholar
103.Wong, S.S., Harper, J.D., Lansbury, P.T. Jr, Lieber, C.M., J. Am. Chem. Soc. 120, 603 (1998).Google Scholar
104.Nguyen, C.V., So, C., Stevens, R.M., Li, Y., Delziet, L., Sarrazin, P., Meyyappan, M., J. Phys. Chem. B 108, 2816 (2004).Google Scholar
105.Wong, S.S., Joselevich, E., Woolley, A.T., Cheung, C.L., Lieber, C.M., Nature 394, 52 (1998).Google Scholar
106.Wong, S.S., Woolley, A.T., Joselevich, E., Cheung, C.L., Lieber, C.M., J. Am. Chem. Soc. 120, 8557 (1998).Google Scholar
107.Grow, R.J., Wang, Q., Cao, J., Wang, D., Dai, H., Appl. Phys. Lett. 86, 093104 (2005).Google Scholar
108.Wood, J.R., Wagner, H.D., Appl. Phys. Lett. 76, 2883 (2000).Google Scholar
109.Lourie, O., Wagner, H., J. Mater. Res. 13, 2418 (1998).Google Scholar
110.Hierold, C., Jungen, A., Stampfer, C., Helbling, T., Sens. Actuators A, Phys. 136, 51 (2007).Google Scholar
111.Král, P., Shapiro, M., Phys. Rev. Lett. 86, 131 (2001).Google Scholar
112.Ghosh, S., Sood, A.K., Kumar, N., Science 299, 1042 (2003).CrossRefGoogle Scholar
113.Liu, J., Dai, L., Baur, J.W., J. Appl. Phys. 101, 064312 (2007).Google Scholar
114.Frank, S., Poncharal, P., Wang, Z.L., de Heer, W.A., Science 280, 1744 (1998).Google Scholar
115.Gao, R., Wang, Z.L., Bai, Z., de Heer, W.A., Dai, L., Gao, M., Phys. Rev. Lett. 85, 622 (2000).CrossRefGoogle Scholar
116.Baughman, R.H., Synth. Met. 78, 339 (1996).CrossRefGoogle Scholar
117.Baughman, R.H., Cui, C., Zakhidov, A.A., Iqbal, Z., Barisci, J.N., Spinks, G.M., Wallace, G.G., Mazzoldi, A., De Rossi, D., Rinzler, A.G., Jaschinski, O., Roth, S., Kertesz, M., Science 284, 1340 (1999).Google Scholar
118.Mølhave, K., Hansen, T.M., Madsen, D.N., Bøggild, P., J. Nanosci. Nanotech. 4, 279 (2004).Google Scholar
119.Kim, P., Lieber, C.M., Science 286, 2148 (1999).Google Scholar
120.Lee, J., Kim, S., Sens. Actuators A, Phys. 120, 193 (2005).CrossRefGoogle Scholar
121.Ke, C.H., Espinosa, H.D., Appl. Phys. Lett. 85, 681 (2004).Google Scholar
122.Rueckes, T., Kim, K., Joselevich, E., Tseng, G.Y., Cheung, C.-L., Lieber, C.M., Science 289, 94 (2000).Google Scholar
123.Sazonova, V., Yaish, Y., Üstünel, H., Roundy, D., Arias, T.A., McEuen, P.L., Nature 431, 284 (2004).Google Scholar
124.Lefèvre, R., Goffman, M.F., Derycke, V., Miko, C., Forró, L., Bourgoin, J.P., Hesto, P., Phys. Rev. Lett. 95, 185504 (2005).Google Scholar
125.Fennimore, A.M., Yuzvinsky, T.D., Han, W.Q., Fuhrer, M.S., Cumings, J., Zettl, A., Nature 424, 408 (2003).CrossRefGoogle Scholar
126.Subramanian, A., Dong, L.X., Tharian, J., Sennhauser, U., Nelson, B.J., Nanotechnology 18, 075703 (2007).CrossRefGoogle Scholar
127.Yuzvinsky, T.D., Fennimore, A.M., Kis, A., Zettl, A., Nanotechnology 17, 434 (2006).Google Scholar
128.Papadakis, S.J., Hall, A.R., Williams, P.A., Vicci, L., Falvo, M.R., Superfine, R., Washburn, S., Phys. Rev. Lett. 93, 146101 (2004).Google Scholar
129.Meyer, J.C., Paillet, M., Roth, S., Science 309, 1539 (2005).Google Scholar
130.Nakajima, M., Arai, S., Saito, Y., Arai, F., Fukuda, T., Jap. J. Appl. Phys. Part 2, 46, L1035 (2007).Google Scholar
131.Cumings, J., Zettl, A., Science, 289, 602 (2000).CrossRefGoogle Scholar
132.Dong, L.X., Nelson, B.J., Fukuda, T., Arai, F., IEEE Tran. Autom. Sci. Eng. 3, 228 (2006).CrossRefGoogle Scholar
133.Deshpande, V.V., Chiu, H.-Y., Postma, H.W.Ch., Miko, C., Forro, L., Bockrath, M., Nano Lett. 6, 1092 (2006).CrossRefGoogle Scholar
134.Garstein, Y.N., Zakhidov, A.A., Baughman, R.H., Phys. Rev. B 68, 115415 (2003).Google Scholar
135.Gupta, S., Hughes, M., Windle, A.H., Robertson, J., Diamond Relat. Mater. 13, 1314 (2004).CrossRefGoogle Scholar
136.Gupta, S., Diamond Relat. Mater. 15, 378 (2006).Google Scholar
137.Gao, M., Dai, L., Baughman, R.H., Spinks, G.M., Wallace, G.G., Proc. SPIE 3987, 18 (2000).Google Scholar
138.Fraysse, J., Minett, A.I., Jaschinski, O., Duesberg, G.S., Roth, S., Carbon 40, 1735 (2002).CrossRefGoogle Scholar
139.Hughes, M., Spinks, G.M., Adv. Mater. 17, 443 (2005)Google Scholar
140.Spinks, G.M., Wallace, G.G., Fifield, L.S., Dalton, L.R., Mazzoldi, A., Do Rossi, D., Khayrullin, I.I., Baughman, R.H., Adv. Mater. 14, 1728 (2002).3.0.CO;2-8>CrossRefGoogle Scholar
141.Barisci, J.N., Wallace, G.G., MacFarlane, D.R., Baughman, R.H., Electrochem. Commun. 6, 22 (2004).Google Scholar
142.Mirfakhrai, T., Oh, J., Kozlov, M., Fok, E.C.W., Zhang, M., Fang, S., Baughman, R.H., Madden, J.D.W., Smart Mater. Struct. 16, S243 (2007).CrossRefGoogle Scholar
143.Fukushima, T., Asaka, K., Kosaka, A., Aida, T., Angew. Chem. Int. Ed. 44, 2410 (2005).Google Scholar
144.Vohrer, U., Kolaric, I., Haque, M.H., Roth, S., Detlaff-Weglikowska, U., Carbon 42, 1159 (2004).CrossRefGoogle Scholar
145.Munoz, E., Dalton, A.B., Collins, S., Kozlov, M., Razal, J., Coleman, J.N., Kim, B.G., Ebron, V.H., Selvidge, M., Farraris, J.P., Baughman, R.H., Adv. Eng. Mater. 6, 801 (2004).CrossRefGoogle Scholar
146.Madden, J.D.W., Barisci, J.N., Anquetil, P.A., Spinks, G.M., Wallace, G.G., Baughman, R.H., Hunter, I.W., Adv. Mater. 18, 870 (2006).Google Scholar
147.Barisci, J.N., Spinks, G.M., Wallace, G.G., Madden, J.D., Baughman, R.H., Smart Mater. Struct. 12, 549 (2003).CrossRefGoogle Scholar
148.Yun, Y., Shanov, V., Tu, Y., Schulz, M.J., Yarmolenko, S., Neralla, S., Sankar, J., Subramaniam, S., Nano Lett. 6, 689 (2006).Google Scholar
149.Vigolo, B., Pénicaud, A., Coulon, C., Sauder, C., Pailler, R., Journet, C., Bernier, P., Poulin, P., Science 290, 1331 (2000).CrossRefGoogle Scholar
150.Fraysse, J., Minett, A.I., Gu, G., Roth, S., Rinzler, A.G., Baughman, R.H., Curr. Appl. Phys. 1, 407 (2001).CrossRefGoogle Scholar
151.Ebron, V.H., Yang, Z., Seyer, D.J., Kozlov, M.E., Oh, J., Xie, H., Razal, J., Hall, L.J., Ferraris, J.P., MacDiarmid, A.G., Baughman, R.H., Science 311, 1580 (2006).Google Scholar
152.Madden, J.D., Science 311, 1559 (2006).Google Scholar
153.Spinks, G.M., Mottaghitalab, V., Bahrami-Samani, M., Whitten, P.G., Wallace, G.G., Adv. Mater. 18, 637 (2006).Google Scholar
154.Tahhan, M., Truong, V.-T., Spinks, G.M., Wallace, G.G., Smart Mater. Struct. 12, 626 (2003).CrossRefGoogle Scholar
155.Landi, B.J., Raffaelle, R.P., Heben, M.J., Alleman, J.L., VanDerveer, W., Gennett, T., Nano Lett. 2, 1329 (2002).Google Scholar
156.Lee, D.Y., Heo, S., Kim, K.J., Kim, D., Lee, M.-H., Lee, S.-J., Bioceramics 17, 733 (2005).Google Scholar
157.Shi, J., Guo, Z.-X., Zhan, B., Luo, H., Li, Y., Zhu, D., J. Phys. Chem. B 109, 14789 (2005).Google Scholar
158.Spinks, G.M., Shin, S.R., Wallace, G.G., Whitten, P.G., Kim, I.Y., Kim, S.I., Kim, S.J., Sens. Actuators B, Chem. 121, 616 (2007).Google Scholar
159.Tong, X., Zheng, J., Lu, Y., Zhang, Z., Cheng, H., Mater. Lett. 61, 1704 (2007).Google Scholar
160.Courty, S., Mine, J., Tajbakhsh, A.R., Terentjev, E.M., Europhys. Lett. 64, 654 (2003).Google Scholar
161.Yun, S.Y., Kim, J., Ounaies, Z., Smart Mater. Struct. 15, N61 (2006).Google Scholar
162.Cho, D.B., Suhr, J., Koratkar, N.A., J. Intell. Mater. Syst. Struct. 17, 209 (2006).Google Scholar
163.Yu, X., Rajamani, R., Stelson, K.A., Cui, T., Sens. Actuators A, Phys. 132, 626 (2006).Google Scholar