Skip to main content Accessibility help
×
Home
Hostname: page-component-65dc7cd545-fz4lj Total loading time: 0.165 Render date: 2021-07-24T05:57:16.202Z Has data issue: true Feature Flags: { "shouldUseShareProductTool": true, "shouldUseHypothesis": true, "isUnsiloEnabled": true, "metricsAbstractViews": false, "figures": true, "newCiteModal": false, "newCitedByModal": true, "newEcommerce": true, "newUsageEvents": true }

Article contents

Biofunctionalized Nanoparticles and Their Uses

Published online by Cambridge University Press:  31 January 2011

Get access

Abstract

Nanotechnology is revolutionizing the way that sensing, electronic, optical, and medical devices are designed because the properties of nanostructures are distinct from their bulk-material counterparts. The incorporation of nanomaterials into devices and sensors to exploit their unique properties has been a challenge because they must be functionalized in a manner that does not destroy their properties. Biological macromolecules can non-covalently or covalently bind to nanomaterials, resulting in the formation of biofunctionalized nanoparticles. These biofunctionalized nanoparticles are exemplified by the peptide-mediated suspension of carbon nanotubes in solution and the templating of bimetallic nanoparticles using multifunctional peptides.

Type
Research Article
Copyright
Copyright © Materials Research Society 2008

Access options

Get access to the full version of this content by using one of the access options below.

References

1.Tomczak, M.M., Glawe, D.D., Drummy, L.F., Lawrence, C.G., Stone, M.O., Perry, C.C., Pochan, D.J., Deming, T.J., Naik, R.R., J. Am. Chem. Soc. 127, 12577 (2005).CrossRefGoogle Scholar
2.Dieckmann, G.R., Dalton, A.B., Johnson, P.A., Razal, J., Chien, J., Giordano, G.M., Muñoz, E., Musselman, I.H., Baughman, R.H., Draper, R.K., J. Am. Chem. Soc. 125, 1770 (2003).CrossRefGoogle Scholar
3.Kramer, R.M., Sowards, L.A., Pender, M.J., Stone, M.O., Naik, R.R., Langmuir 21, 8466 (2005).CrossRefGoogle Scholar
4.Douglas, T., Strable, E., Willits, D., Aitouchen, A., Libera, M., Young, M., Adv. Mater. 14, 415 (2002).3.0.CO;2-W>CrossRefGoogle Scholar
5.Douglas, T., Young, M., Adv. Mater. 11, 679 (1999).3.0.CO;2-J>CrossRefGoogle Scholar
6.Douglas, T., Young, M., Nature 393, 152 (1998).CrossRefGoogle Scholar
7.Cheung, C.L., Camarero, J.A., Woods, B.W., Lin, T., Johnson, J.E., DeYoreo, J.J., J. Am. Chem. Soc. 125, 6848 (2003).CrossRefGoogle Scholar
8.Smith, J.C., Lee, K.-B., Wang, Q., Finn, M.G., Johnson, J.E., Mrksich, M., Mirkin, C.A., Nano Lett. 3, 883 (2003).CrossRefGoogle Scholar
9.Hall, S.R., Shenton, W., Engelhardt, H., Mann, S., Chem. Phys. Chem. 2, 184 (2001).3.0.CO;2-J>CrossRefGoogle Scholar
10.Györvary, E., Schroedter, A., Talapin, D.V., Weller, H., Pum, D., Sleyter, U.B., J. Nanosci. Nanotech. 4, 115 (2004).CrossRefGoogle Scholar
11.Wong Po Foo, C., Patwardhan, S.V., Belton, D.J., Kitchel, B., Anastasiades, D., Huang, J., Naik, R.R., Perry, C.C., Kaplan, D.L., Proc. Nat. Acad. Sci. 103, 9428 (2006).CrossRefGoogle Scholar
12.Wang, S., Humphreys, E.S., Chung, S.-Y., Delduco, D.F., Lustig, S.R., Wang, H., Parker, K.N., Rizzo, N.W., Subramoney, S., Chiang, Y.-M., Jagota, A., Nat. Mater. 2, 196 (2003).CrossRefGoogle Scholar
13.Pender, M.J., Sowards, L.A., Hartgerink, J.D., Stone, M.O., Naik, R.R., Nano Lett. 6, 40 (2006).CrossRefGoogle Scholar
14.Turkevitch, J., Stevenson, P.C., Hillier, J., Discuss. Faraday Soc. 11, 55 (1951).CrossRefGoogle Scholar
15.Watson, K.J., Zhu, J., Nguyen, S.B.T., Mirkin, C.A., J. Am. Chem. Soc. 121, 462 (1999).CrossRefGoogle Scholar
16.Fan, H., Lu, Y., Stump, A., Reed, S.T., Baer, T., Schunk, R., Perez-Luna, V., López, G.P., Brinker, C.J., Nature 405, 56 (2000).CrossRefGoogle Scholar
17.Doshi, D.A., Gibaud, A., Goletto, V., Lu, M., Gerung, H., Ocko, B., Hang, S.M., Brinker, C.J., J. Am. Chem. Soc. 125, 11646 (2003).CrossRefGoogle Scholar
18.Slocik, J.M., Tam, F., Halas, N.J., Naik, R.R., Nano Lett. 7, 1054 (2007).CrossRefGoogle Scholar
19.Naik, R.R., Brott, L.L., Clarson, S.J., Stone, M.O., J. Nanosci. Nanotechnol. 2, 95 (2002).CrossRefGoogle Scholar
20.Lee, S.-W., Mao, C., Flynn, C.E., Belcher, A.M., Science 296, 892 (2002).CrossRefGoogle Scholar
21.Gaskin, D.J.H., Starck, K., Vulfson, E.N., Biotechnol. Lett. 22, 1211 (2000).CrossRefGoogle Scholar
22.Whaley, S.R., English, D.S., Hu, E.L., Barbara, P.F., Belcher, A.M., Nature 405, 665 (2000).CrossRefGoogle Scholar
23.Naik, R.R., Stringer, S.J., Agarwal, G., Jones, S.E., Stone, M.O., Nat. Mater. 1, 169 (2002).CrossRefGoogle Scholar
24.Naik, R.R., Jones, S.E., Murray, C.J., McAuliffe, J.C., Vaia, R.A., Stone, M.O., Adv. Funct. Mater. 14, 25 (2004).CrossRefGoogle Scholar
25.Braun, R., Sarikaya, M., Schulten, K., J. Biomater. Sci., Polym. Ed. 13, 747 (2002).CrossRefGoogle Scholar
26.Sarikaya, M., Tamerler, C., Jen, A.K.-Y., Schulten, K., Baneyx, F., Nat. Mater. 2, 577 (2003).CrossRefGoogle Scholar
27.Tamerler, C., Sarikaya, M., Acta Biomater. 3, 289 (2007).CrossRefGoogle Scholar
28.Oren, E.E., Tamerler, C., Sahin, D., Hnilova, M., Safak Seker, U.O., Sarikaya, M., Samudrala, R., Bioinformatics 23, 2816 (2007).CrossRefGoogle Scholar
29.Witus, L.S., Rocha, J.-D.R., Yuwono, V.M., Paramonov, S.E., Weisman, R.B., Hartgerink, J.D., J. Mater. Chem. 17, 1909 (2007).CrossRefGoogle Scholar
30.Slocik, J.M., Stone, M.O., Naik, R.R., Small 1, 1048 (2005).CrossRefGoogle Scholar
31.Slocik, J.M., Naik, R.R., Adv. Mater. 18, 1988 (2006).CrossRefGoogle Scholar
32.Ma, N., Dooley, C.J., Kelley, S.O., J. Am. Chem. Soc. 128, 12598 (2006).CrossRefGoogle Scholar
33.Saito, R., Dresselhaus, G., Dresselhaus, M.S., Physical Properties of Carbon Nanotubes (Imperial College Press, London, 1998).CrossRefGoogle Scholar
34.Boul, P.J., Liu, J., Mickelson, E.T., Huffman, C.B., Ericson, L.M., Chiang, I.W., Smith, K.A., Colbert, D.T., Hauge, R.H., Margrave, J.L., Smalley, R.E., Chem. Phys. Lett. 310, 367 (1999).CrossRefGoogle Scholar
35.Dalton, A.B., Ortiz-Acevedo, A., Zorbas, V., Brunner, E., Sampson, W.M., Collins, S., Razal, J.M., Yoshida, M.M., Baughman, R.H., Draper, R.K., Musselman, I.H., Jose-Yacaman, M., Dieckmann, G.R., Adv. Funct. Mater. 14, 1147 (2004).CrossRefGoogle Scholar
36.Ortiz-Acevedo, A., Xie, H., Zorbas, V., Sampson, W.M., Dalton, A.B., Baughman, R.H., Draper, R.K., Musselman, I.H., Dieckmann, G.R., J. Am. Chem. Soc. 127, 9512 (2005).CrossRefGoogle Scholar
37.Slocik, J.M., Zabinski, J.S. Jr, Phillips, D.M., Naik, R.R., Small (2007), Accepted.Google Scholar
38.Lee, J.-S., Han, M.S., Mirkin, C.A., Angew. Chem. Int. Ed. 46, 4093 (2007).CrossRefGoogle Scholar
39.Slocik, J.M., Naik, R.R., Curr. Nanosci. 3, 117 (2007).CrossRefGoogle Scholar
40.Slocik, J.M., Govorov, A.O., Naik, R.R., Supramol. Chem. 18, 415 (2006).CrossRefGoogle Scholar
41.Mitchel, G.P., Mirkin, C.A., Letsinger, R.L., J. Am. Chem. Soc. 121, 8122 (1999).CrossRefGoogle Scholar
42.Li, M., Mann, S., J. Mater. Chem. 14, 2260 (2004).CrossRefGoogle Scholar
43.Rosi, N.L., Giljohann, D.A., Thaxton, C.S., Lytton-Jean, A.K., Han, M.S., Mirkin, C.A., Science 312, 1027 (2006).CrossRefGoogle Scholar

Send article to Kindle

To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Biofunctionalized Nanoparticles and Their Uses
Available formats
×

Send article to Dropbox

To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

Biofunctionalized Nanoparticles and Their Uses
Available formats
×

Send article to Google Drive

To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

Biofunctionalized Nanoparticles and Their Uses
Available formats
×
×

Reply to: Submit a response

Please enter your response.

Your details

Please enter a valid email address.

Conflicting interests

Do you have any conflicting interests? *