Hostname: page-component-77c89778f8-gvh9x Total loading time: 0 Render date: 2024-07-19T10:10:45.607Z Has data issue: false hasContentIssue false

Zeolite-templated Carbon Network: A Beta Zeolite Case Study

Published online by Cambridge University Press:  23 March 2020

Eliezer F. Oliveira*
Affiliation:
Gleb Wataghin Institute of Physics, University of Campinas (UNICAMP), Campinas, SP, Brazil Center for Computational Engineering & Sciences (CCES), University of Campinas (UNICAMP), Campinas, SP, Brazil Department of Materials Science and Nanoengineering, Rice University, Houston, TX, United States
Leonardo D. Machado
Affiliation:
Department of Theoretical and Experimental Physics, Federal University of Rio Grande do Norte (UFRN), Natal, RN, Brazil
Ray H. Baughman
Affiliation:
Alan G. MacDiarmid NanoTech Institute, The University of Texas at Dallas, Dallas, Texas, 75080-3021, United States
Douglas S. Galvao
Affiliation:
Gleb Wataghin Institute of Physics, University of Campinas (UNICAMP), Campinas, SP, Brazil Center for Computational Engineering & Sciences (CCES), University of Campinas (UNICAMP), Campinas, SP, Brazil
Get access

Abstract

In this work, we report a preliminary study, based on molecular dynamics simulations, about 3D carbon nanotube networks that could be formed inside the beta zeolites. We investigated their structural stability and mechanical properties. Our results show that from all possible carbon nanotubes that can be embedded inside the channels of the beta zeolite, the one with chirality (6,0) is the most stable. Using the carbon nanotube (6,0), it is possible to build 3D structures with both all (higher density) and only partially (lower density) filled zeolite channels. Under tensile uniaxial force, the 3D low-density carbon nanotube networks are anisotropic and can be stretched along the direction in which all nanotubes are perpendicular up to 130% of strain without fracture. Also, the porosity and network stiffness can be tuned depending on the amount of carbon nanotubes filling the channels of the zeolites.

Type
Articles
Copyright
Copyright © Materials Research Society 2020

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

References:

Romo-Herrera, J. M., Terrones, M., Terrones, H., Dag, S., and Meunier, V., Nano Letters 7, 570 (2007).10.1021/nl0622202CrossRefGoogle Scholar
Nishihara, H., Kyotani, T., Chem. Commun 54, 5648 (2018).10.1039/C8CC01932KCrossRefGoogle Scholar
Braun, E., Lee, Y., Moosavi, S. M., Barthel, S., Mercado, R., Baburin, I. A., Proserpio, D. M., Smit, B., PNAS 35, E8116-E8124, 2018.10.1073/pnas.1805062115CrossRefGoogle Scholar
Kim, K., Lee, T., Kwon, Y., Seo, Y., Song, J., Park, J. K., Lee, H., Park, J. Y., Ihee, H., Cho, S. J., Ryoo, R., Nature 535, 131 (2016).10.1038/nature18284CrossRefGoogle Scholar
Rappe, A.K., Casewit, C.J., Colwell, K.S., Goddard, W.A. III, Skiff, W.M., J. Am. Chem. Soc. 114, 10024 (1992) .10.1021/ja00051a040CrossRefGoogle Scholar
van Duin, A. C. T., Dasgupta, S., Lorant, F., Goddard, W. A., J. Phys. Chem. A 105, 9396 (2001)10.1021/jp004368uCrossRefGoogle Scholar
Plimpton, S. J., Comput. Phys. 117, 1 (1995).10.1006/jcph.1995.1039CrossRefGoogle Scholar
Oliveira, E. F., Autreto, P. A. S., Woellner, C. F., Galvao, D. S., Carbon 139, 782 (2018).10.1016/j.carbon.2018.07.038CrossRefGoogle Scholar
Oliveira, E. F., Autreto, P. A. S., Woellner, C. F., Galvao, D. S., Comput. Mater. Sci. 161, 190 (2019).10.1016/j.commatsci.2019.01.050CrossRefGoogle Scholar
Oliveira, E. F., Autreto, P. A. S., Woellner, C. F., Galvao, D. S., MRS Adv . 4(3-4), 191 (2019).10.1557/adv.2018.670CrossRefGoogle Scholar
Jensen, B. D., Wise, K. E., Odegard, G. M., J. Comput. Chem 36, 1587 (2015).10.1002/jcc.23970CrossRefGoogle Scholar
Zsoldos, I., Kakuk, G., Reti, T., Szasz, A., Modelling Simul. Mater. Sci. Eng. 12, 1251(2004).10.1088/0965-0393/12/6/017CrossRefGoogle Scholar
Burchell, T.D., Carbon Materials for Advanced Technologies, 1st ed., Elsevier Science, Oxford, 1999.Google Scholar
Frenkel, D, Smit, B. Understanding molecular simulation: From algorithms to applications. 2nd ed.Academic Press: San Diego, 2001.Google Scholar
Smallman, R.E., Ngan, A.H.W., Physical Metallurgy and Advanced Materials Engineering, 7th ed., Elsevier, Butterworth-Heinemann, 2007.Google Scholar