Hostname: page-component-848d4c4894-v5vhk Total loading time: 0 Render date: 2024-06-30T10:08:35.334Z Has data issue: false hasContentIssue false

Temperature and Electric Field Influence on the Electrical Properties of Light-Emitting Devices Comprising PEDOT:PSS/GPTMS/Zn2SIO4:Mn Composites

Published online by Cambridge University Press:  12 February 2018

Flavio H. Feres
Affiliation:
Departamento de Física, Universidade Estadual Paulista - UNESP, Avenida 24A, 1515, CEP:13506-900, Rio Claro, SP, Brazil.
Lucas Fugikawa Santos
Affiliation:
Departamento de Física, Universidade Estadual Paulista - UNESP, Avenida 24A, 1515, CEP:13506-900, Rio Claro, SP, Brazil. Departamento de Física, Universidade Estadual Paulista - UNESP, Rua Cristovao Colombo 2265, CEP15054-000, São José do Rio Preto, SP, Brazil.
Giovani Gozzi*
Affiliation:
Departamento de Física, Universidade Estadual Paulista - UNESP, Avenida 24A, 1515, CEP:13506-900, Rio Claro, SP, Brazil.
Get access

Abstract

In the present study, we analyze the influence of temperature and active layer thickness on the electrical properties of electroluminescent devices comprising a polymeric conductive blend (poly(3,4 ethylenedioxythiophene):polystyrene sulfonate, PEDOT:PSS), an inorganic electroluminescent material (manganese doped zinc orthosilicate, Zn2SiO4:Mn) and an organosilicon material (3-glicidoxypropyltrimethoxysilane, GPTMS), manufactured at different weight ratios of the component materials. The devices were obtained by depositing the active layer by drop-casting onto ITO-coated (RF-sputtering) glass substrates and thermally evaporating gold top electrodes in high vacuum. The results show that 90 wt% Zn2SiO4:Mn is required to observe high electroluminescence from the fabricated devices and that the optimum performance (turn-on voltage of 33 V, luminous efficacy of 24 cd/A and maximum luminance of almost 2000 cd/m2) was achieve for a (9.5/0.5/90) (GPTMS/PEDOT:PSS/Zn2SiO4:Mn) weight ratio. The device turn-on voltage found to be as proportional to the thickness of the active layer, indicating that the electroluminescence occurs by a field-effect mechanism. The temperature variation in the 100-300 K range allowed us to develop a theoretical model for the device operation, where the charge carrier transport in the active layer is well described by the variable range hopping model, with luminous efficacy nearby independent of the temperature.

Type
Articles
Copyright
Copyright © Materials Research Society 2018 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Kraft, A., Grimsdale, A.C. and Holmes, A.B., Angew. Chem. Int. 37, 402428 (1998)Google Scholar
Gozzi, G., Queiroz, E.L., Zucolotto, V., Faria, R.M. and Chinaglia, D.L., Phys. Status Solidi B 252 (2) 404410 (2015)Google Scholar
Sun, Q., Li, Y. and Pei, Q., J. Disp. Technol. 3 (2) 211224 (2007)CrossRefGoogle Scholar
Gozzi, G., Cangnani, L.D., Faria, R.M. and Santos, L.F., J. Solid State Electrochem. 18 31813190 (2014)Google Scholar
Chinaglia, D.L., Gozzi, G., Schmidt, T.F., Santos, L.F., Balogh, D.T., Oliveira, O.N. Jr., and Faria, R.M., Philos. Mag. Lett. 87 (6) 403408 (2007)Google Scholar
Gozzi, G., Chinaglia, D.L., Schimidt, T.F. and Oliveira, O.N. jr, Mater, . Sci. Eng. C 31 969974 (2011)Google Scholar
Colucci, R., Quadros, M.H., Feres, F.H., Maia, F.B., de Vicente, F.S., Faria, G.C., Santos, L.F. and Gozzi, G., presented at the XV Brazil-MRS Meeting, Campinas, SP, 2016 (unpublished)Google Scholar
Nardes, A.M., Kemerink, M., de Kok, M.M., Vinken, E., Maturova, K. and Janssen, R.A.J., Org. Electron. 9 727734 (2008)Google Scholar
Mott, N.F. and Davis, E.A., in Electronic Processes in Non-Crystalline Materials (Clarendon-Press, Oxford, 1971)Google Scholar
Nardes, A.M., Kemerink, M. and Janssen, R.A.J., Phys. Rev. B 76 (8) 085208 (2007)Google Scholar