Published online by Cambridge University Press: 22 March 2018
Morphological control of energetic materials (EM) is highly desired because ill-defined morphology arising from variations in processing method and supplier make it impossible to reproducibly engineer their physicochemical properties. As the most powerful, non nuclear energetic material to date, 2,4,6,8,10,12-hexanitro -2,4,6,8,10,12-hexaazaisowurtzitane (CL-20) has been the subject of significant interest for improved applications in military grade explosives. Here we report a new method for recrystallization of CL-20 from irregular bulk EMs using a surfactant assisted self-assembly process to produce uniform spherical micron-sized particles. Detailed electron microscopy studies indicate that surfactant plays a critical role in controlling CL-20 morphology. Combined X-ray diffraction and Raman spectroscopy results reveal that the resultant spherical CL-20 particles exhibit an orthorhombic β-phase crystal structure. This material is expected to display enhanced functional reproducibility due to its monodisperse nature as well as decreased shock sensitivity due to their sub-micron particle size.