Hostname: page-component-8448b6f56d-c47g7 Total loading time: 0 Render date: 2024-04-18T01:06:07.290Z Has data issue: false hasContentIssue false

SuPR-NaP Technique for Printing Ultrafine Silver Electrodes and its Use for Low-Voltage Operation of Organic Thin-Film Transistors

Published online by Cambridge University Press:  03 May 2018

G. Kitahara*
Affiliation:
Department of Applied Physics, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba Central 5, 1-1-1 Higashi, Tsukuba 305-8565, Japan
K. Aoshima
Affiliation:
Department of Applied Physics, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba Central 5, 1-1-1 Higashi, Tsukuba 305-8565, Japan
J. Tsutsumi
Affiliation:
National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba Central 5, 1-1-1 Higashi, Tsukuba 305-8565, Japan
H. Minemawari
Affiliation:
National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba Central 5, 1-1-1 Higashi, Tsukuba 305-8565, Japan
S. Arai
Affiliation:
Department of Applied Physics, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
T. Hasegawa
Affiliation:
Department of Applied Physics, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba Central 5, 1-1-1 Higashi, Tsukuba 305-8565, Japan
Get access

Abstract

Recently, an epoch-making printing technology called “SuPR-NaP (Surface Photo-Reactive Nanometal Printing)” that allows easy, high-speed, and large-area manufacturing of ultrafine silver wiring patterns has been developed. Here we demonstrate low-voltage operation of organic thin-film transistors (OTFTs) composed of printed source/drain electrodes that are produced by the SuPR-NaP technique. We utilize an ultrathin layer of perfluoropolymer, Cytop, that functions not only as a base layer for producing patterned reactive surface in the SuPR-NaP technique but also as an ultrathin gate dielectric layer of OTFTs. By the use of 22 nm-thick Cytop gate dielectric layer, we successfully operate polycrystalline pentacene OTFTs below 2 V with negligible hysteresis. We also observe the improvement of carrier injection by the surface modification of printed silver electrodes. We discuss that the SuPR-NaP technique allows the production of high-capacitance gate dielectric layers as well as high-resolution printed silver electrodes, which provides promising bases for producing practical active-matrix OTFT backplanes.

Type
Articles
Copyright
Copyright © Materials Research Society 2018 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Sirringhaus, H., Kawase, T., Friend, R. H., Shimoda, T., Inbasekaran, M., Wu, W., and Woo, E. P., Science 290, 21232126 (2000).CrossRefGoogle Scholar
Minemawari, H., Yamada, T., Matsui, H., Tsutsumi, J., Haas, S., Chiba, R., Kumai, R., and Hasegawa, T., Nature 475, 364367 (2011).CrossRefGoogle Scholar
Fukuda, K., Takeda, Y., Yoshimura, Y., Shiwaku, R., Tran, L. T., Sekine, T., Mizukami, M., Kumaki, D., and Tokito, S., Nat. Commun. 5, 4147 (2014).CrossRefGoogle Scholar
Kaltenbrunner, M., Sekitani, T., Reeder, J., Yokota, T., Kuribara, K., Tokuhara, T., Drack, M., Schwödiauer, R., Graz, I., Gogonea, S. B., Bauer, S., and Someya, T., Nature 499, 458465 (2013).CrossRefGoogle Scholar
Yamada, T., Fukuhara, K., Matsuoka, K., Minemawari, H., Tsutsumi, J., Fukuda, N., Aoshima, K., Arai, S., Makita, Y., Kubo, H., Enomoto, T., Togashi, T., Kurihara, M., and Hasegawa, T., Nat. Commun. 7, 11402 (2016).CrossRefGoogle Scholar
Aoshima, K., Arai, S., Fukuhara, K., Yamada, T., and Hasegawa, T., Org. Electron. 41, 137142 (2017).CrossRefGoogle Scholar
Kitahara, G., Aoshima, K., Tsutsumi, J., Minemawari, H., Arai, S., and Hasegawa, T., Org. Electron. 50, 426428 (2017).CrossRefGoogle Scholar
Walser, M. P., Kalb, W. L., Mathis, T., and Batlogg, B., Appl. Phys. Lett. 95, 233301 (2009).CrossRefGoogle Scholar
Umeda, T., Kumaki, D., and Tokito, S., Org. Electron. 9, 545549 (2008).CrossRefGoogle Scholar
Blülle, B., Häusermann, R., and Batlogg, B., Phys. Rev. Appl. 1, 034006 (2014).CrossRefGoogle Scholar
Fukuda, K., Sekine, T., Kobayashi, Y., Kumaki, D., Itoh, M., Nagaoka, M., Toda, T., Saito, S., Kurihara, M., Sakamoto, M., and Tokito, S., Org. Electron. 13, 16601664 (2012).CrossRefGoogle Scholar
Ghosh, S., Yang, R., Kaumeyer, M., Zorman, C. A., Rowan, S. J., Feng, P. X.-L., and Sankaran, R. M., Appl. Mater. Interfaces 6, 30993104 (2014).CrossRefGoogle Scholar
Yang, S. Y., Kim, S. H., Shin, K., Jeon, H., and Park, C. E., Appl. Phys. Lett. 88, 173507 (2006).CrossRefGoogle Scholar
Asahi Glass Company: CYTOP Technical Brochure. Available at:http://agcchem.com/documentation/technical-data/cytop/513-cytop-brochure/file (accessed 1 March 2018)Google Scholar
Ono, S., Häusermann, R., Chiba, D., Shimamura, K., Ono, T., and Batlogg, B., Appl. Phys. Lett. 104, 013307 (2014).CrossRefGoogle Scholar
Halik, M., Klauk, H., Zschieschang, U., Schmid, G., Dehm, C., Schütz, M., Maisch, S., Effenberger, F., Brunnbauer, M., and Stellacci, F., Nature 431, 963966 (2004).CrossRefGoogle Scholar
Hong, J.-P., Park, A.-Y., Lee, S., Kang, J., Shin, N., and Yoon, D. Y., Appl. Phys. Lett. 92, 143311 (2008).CrossRefGoogle Scholar
Kuzumoto, Y., and Kitamura, M., Appl. Phys. Express 7, 035701 (2014).CrossRefGoogle Scholar