Hostname: page-component-8448b6f56d-gtxcr Total loading time: 0 Render date: 2024-04-25T00:13:28.313Z Has data issue: false hasContentIssue false

A steady-state and transient analysis of the electron transport that occurs within bulk wurtzite zinc-magnesium-oxide alloys subjected to high-fields

Published online by Cambridge University Press:  08 June 2018

Poppy Siddiqua
Affiliation:
School of Engineering, The University of British Columbia, Kelowna, British Columbia, Canada V1V 1V7
Walid A. Hadi
Affiliation:
Department of Electrical and Computer Engineering, Florida State University, Panama City, Florida 32405, U.S.A.
Michael S. Shur
Affiliation:
Department of Electrical, Computer, and Systems Engineering, Rensselaer Polytechnic Institute, Troy, New York 12180-3590, U.S.A.
Stephen K. O’Leary*
Affiliation:
School of Engineering, The University of British Columbia, Kelowna, British Columbia, Canada V1V 1V7
Get access

Abstract

We present some recently acquired results corresponding to the nature of the electron transport that occurs within bulk alloys of zinc-magnesium-oxide. These results are obtained using three-valley ensemble semi-classical Monte Carlo electron transport simulations. The impact that the magnesium content plays in shaping the form of the electron transport related characteristics associated with this alloy system is explored. Both steady-state and transient electron transport results are examined. The device implications of these results are then commented upon.

Type
Articles
Copyright
Copyright © Materials Research Society 2018 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Özgür, Ü., Alivov, Ya. I., Liu, C., Teke, A., Reshchikov, M. A., Doğan, S., Avrutin, V., Cho, S.-J., and Morkoç, H., J. Appl. Phys. 98, 041301 (2005).CrossRefGoogle Scholar
Özgür, Ü., Hofstetter, D., and Morkoç, H., Proc. IEEE 98, 1255 (2010).CrossRefGoogle Scholar
Ferry, D. K., Phys. Rev. B 12, 2361 (1975).CrossRefGoogle Scholar
Hadi, W. A., Shur, M. S., and O’Leary, S. K., J. Mater. Sci.: Mater. Electron. 25, 4675 (2014).Google Scholar
Ohtomo, A., Kawasaki, M., Koida, T., Masubuchi, K., Koinuma, H., Sakurai, Y., Yoshida, Y., Yasuda, T., and Segawa, Y., Appl. Phys. Lett. 72, 2466 (1998).CrossRefGoogle Scholar
Fan, M. M., Liu, K. W., Zhang, Z. Z., Li, B. H., Chen, X., Zhao, D. X., Shan, C. X., and Shen, D. Z., Appl. Phys. Lett. 105, 011117 (2014).Google Scholar
Yarar, Z., J. Electron. Mater. 40, 466 (2011).CrossRefGoogle Scholar
Chen, H., Wang, P., Cheng, J., Li, Z., Guo, L., and Zhang, Z., IEEE Trans. Electron Devices 64, 2148 (2017).CrossRefGoogle Scholar
Lugli, P. and Ferry, D. K., IEEE Trans. Electron Devices 32, 2431 (1985).CrossRefGoogle Scholar
Seeger, K., Semiconductor Physics: An Introduction, 9th ed. (Springer, Berlin, 2004).CrossRefGoogle Scholar
Siddiqua, P. and O’Leary, S. K., J. Mater. Sci.: Mater. Electron. 29, 3511 (2018).Google Scholar
Ke, Y., Lany, S., Berry, J. J., Perkins, J. D., Parilla, P. A., Zakutayev, A., Ohno, T., O’Hayre, R., and Ginley, D. S., Adv. Funct. Mater. 24, 2875 (2014).CrossRefGoogle Scholar