Hostname: page-component-848d4c4894-v5vhk Total loading time: 0 Render date: 2024-06-24T22:26:52.415Z Has data issue: false hasContentIssue false

Spray-on thermoelectric energy harvester

Published online by Cambridge University Press:  26 December 2018

Robert E. Peale
Affiliation:
Physics, University of Central Florida, Orlando FL 32816 Truventic LLC, 1209 W. Gore St. Orlando FL 32805
Seth Calhoun
Affiliation:
Physics, University of Central Florida, Orlando FL 32816
Nagendra Dhakal
Affiliation:
Physics, University of Central Florida, Orlando FL 32816
Isaiah O. Oladeji
Affiliation:
Physics, University of Central Florida, Orlando FL 32816 SISOM Thin Film LLC, 1209 W. Gore St. Orlando FL 32805
Francisco J. González*
Affiliation:
Physics, University of Central Florida, Orlando FL 32816 Terahertz Science and Technology National Lab (LANCyTT), Universidad Autónoma de San Luis Potosí, Mexico
Get access

Abstract

Thermoelectric (TE) thin films have promise for harvesting electrical energy from waste heat. We demonstrate TE materials and thermocouples deposited by aqueous spray deposition on glass. The n-type material was CdO doped with Mn and Sn. Two p-type materials were investigated, namely PbS with co-growth of CdS and doped with Na and Na2CoO4. Seebeck coefficients, resistivity, and power generation for thermocouples were characterized.

Type
Articles
Copyright
Copyright © Materials Research Society 2018 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Department of Defense, Army, SBIR Program 2018.2 Solicitation, Topic Number A18-112 (2018).Google Scholar
Banner, Richard D., Flight measurements of airplane structural temperatures at supersonic speeds, (Natl. Advisory Comm. Aeronautics, Washington, 1957), Fig. 3.Google Scholar
Gonzales, Ralph H., Diesel Exhaust Emission System Temperature Test (U.S. Department of Agriculture, Forest Service, National Technology & Development Program, Dec 2008) 5100—Fire Management 0851 1816—SDTDCGoogle Scholar
Goldsmid, H. J., Applications of Thermoelectricity (John Wiley & Sons, New York, 1960)Google Scholar
Ioffe, A. F., Semiconductor Thermoelements and Thermoelectric Cooling (infosearch, London, 1957) p. 87.Google Scholar
BioLite, bioliteenergy.com., (accesed on Nov 15 2018)Google Scholar
Andrews, J. P., Thermoelectric power of cadmium oxide, Proc. Phys. Soc. 59, 990 (1947).CrossRefGoogle Scholar
Lamb, E. F., Transactions of the Faraday Society, 58, p.1424-1438 (1962).CrossRefGoogle Scholar
Mahesh Reddy, D., Jeyaprakash, B.G., and John Bosco Balaguru, R., J. Applied Sciences 12, 1769 (2012)CrossRefGoogle Scholar
Abouelkhair, Hussain, Figueiredo, Pedro N., Calhoun, Seth R., Fredricksen, Chris J., Oladeji, Isaiah O., Smith, Evan M., Cleary, Justin W. and Peale, Robert E., MRS Advances 3, 291 (2018).CrossRefGoogle Scholar
Zhao, Li-Dong, He, Jiaqing, Hao, Shiqiang, Wu, Chun-I, Hogan, Timothy P., Wolverton, C., Dravid, Vinayak P., and Kanatzidis, Mercouri G., , J. Am. Chem. Soc. 134, 16327 (2012).CrossRefGoogle Scholar
Michitaka, O. H., J. Ceramic Society of Japan 119, 770 (2011).Google Scholar
Koumoto, K., Terasaki, I., Kajitani, T., Ohtaki, M., Funahashi, R., , in Thermoelectrics Handbook, Macro to Nano, edited by Rowe, D. M. (CRC Taylor & Francis, 2006), Chapter 35.Google Scholar
Khalilzadeh-Rezaie, F., Oladeji, I. O., Yusuf, G. T., Nath, J., Nader, N., Vangala, S., Cleary, J. W., Schoenfeld, W. V., and Peale, R. E., in MRS Proceedings (Cambridge Univ., 2015), Vol 1805, pp. mrss15-2136423.Google Scholar
Gao, Min, , in Thermoelectrics Handbook, Macro to Nano, edited by Rowe, D. M. (CRC Taylor & Francis, 2006), Chapter 35.Google Scholar