Hostname: page-component-745bb68f8f-g4j75 Total loading time: 0 Render date: 2025-01-15T12:07:25.208Z Has data issue: false hasContentIssue false

Spectral shifts upon halide segregation in perovskite nanocrystals observed via transient absorption spectroscopy

Published online by Cambridge University Press:  14 July 2020

Michael L. Crawford
Affiliation:
Department of Chemistry and Biochemistry, University of Oregon, Eugene, Oregon97403, USA
James C. Sadighian
Affiliation:
Department of Chemistry and Biochemistry, University of Oregon, Eugene, Oregon97403, USA
Yasser Hassan
Affiliation:
Clarendon Laboratory, Department of Physics, University of Oxford, Parks Road, OxfordOX1 3PU, UK
Henry J. Snaith
Affiliation:
Clarendon Laboratory, Department of Physics, University of Oxford, Parks Road, OxfordOX1 3PU, UK
Cathy Y. Wong
Affiliation:
Department of Chemistry and Biochemistry, University of Oregon, Eugene, Oregon97403, USA Oregon Center for Optical, Molecular, and Quantum Science, University of Oregon, Eugene, Oregon97403, USA Materials Science Institute, University of Oregon, Eugene, Oregon97403, USA
Get access

Abstract

Lead halide perovskite nanocrystals (NCs) are promising for applications in light emitting devices owing to a strong emission spectrum that is tunable throughout the visible region by altering halide composition. However, in mixed-halide perovskite systems photoinduced migration drives formation of halide-segregated domains, altering the emission spectrum. The mechanism by which this segregation occurs is currently the subject of intense investigation. Processes involving the perovskite surface are expected to be of enhanced prevalence in NCs due to their large surface area to volume ratio. In this work, we use transient absorption spectroscopy to probe the excited-state dynamics of NCs before and after halide segregation. Comparison of global fit spectra of the measured signals suggests the accumulation of iodide at the surface, resulting in a redshifted emission spectrum.

Type
Articles
Copyright
Copyright © Materials Research Society 2020

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Schmidt, L. C., Pertegás, A., González-Carrero, S., Malinkiewicz, O., Agouram, S., Mínguez Espallargas, G., Bolink, H. J., Galian, R. E., and Pérez-Prieto, J., J. Am. Chem. Soc. 136 (3), 850853 (2014).10.1021/ja4109209CrossRefGoogle Scholar
Wang, L., Williams, N. E., Malachosky, E. W., Otto, J. P., Hayes, D., Wood, R. E., Guyot-Sionnest, P., and Engel, G. S., ACS Nano 11 (3), 26892696 (2017).10.1021/acsnano.6b07574CrossRefGoogle Scholar
Protesescu, L., Yakunin, S., Bodnarchuk, M. I., Krieg, F., Caputo, R., Hendon, C. H., Yang, R. X., Walsh, A., and Kovalenko, M. V., Nano Lett. 15 (6), 36923696 (2015).10.1021/nl5048779CrossRefGoogle Scholar
Deng, W., Xu, X., Zhang, X., Zhang, Y., Jin, X., Wang, L., Lee, S.-T., and Jie, J., Advanced Functional Materials 26 (26), 47974802 (2016).10.1002/adfm.201601054CrossRefGoogle Scholar
Zhang, F., Zhong, H., Chen, C., Wu, X., Hu, X., Huang, H., Han, J., Zou, B., and Dong, Y., ACS Nano 9 (4), 45334542 (2015).10.1021/acsnano.5b01154CrossRefGoogle Scholar
Hassan, Y., Ashton, O. J., Park, J. H., Li, G., Sakai, N., Wenger, B., Haghighirad, A. A., Noel, N. K., Song, M. H., Lee, B. R., Friend, R. H., and Snaith, H. J., J. Am. Chem. Soc. 141 (3), 12691279 (2019).10.1021/jacs.8b09706CrossRefGoogle Scholar
Bischak, C. G., Hetherington, C. L., Wu, H., Aloni, S., Ogletree, D. F., Limmer, D. T., and Ginsberg, N. S., Nano Lett. 17 (2), 10281033 (2017).10.1021/acs.nanolett.6b04453CrossRefGoogle Scholar
Hoke, E. T., Slotcavage, D. J., Dohner, E. R., Bowring, A. R., Karunadasa, H. I., and McGehee, M. D., Chem. Sci. 6, 613617 (2015).10.1039/C4SC03141ECrossRefGoogle Scholar
Barker, A. J., Sadhanala, A., Deschler, F., Gandini, M., Senanayak, S. P., Pearce, P. M., Mosconi, E., Pearson, A. J., Wu, Y., Kandada, A. R. S., Leijtens, T., De Angelis, F., Dutton, S. E., Petrozza, A., and Friend, R. H., ACS Energy Lett. 2 (6), 14161424 (2017).10.1021/acsenergylett.7b00282CrossRefGoogle Scholar
Draguta, S., Sharia, O., Yoon, S. J., Brennan, M. C., Morozov, Y. V., Manser, J. S., Kamat, P. V., Schneider, W. F., and Kuno, M., Nat. Commun. 8, 200 (2017).10.1038/s41467-017-00284-2CrossRefGoogle Scholar
Belisle, R. A., Bush, K. A., Bertoluzzi, L., Gold-Parker, A., Toney, M. F., and McGehee, M. D., ACS Energy Lett. 3 (11), 26942700 (2018).10.1021/acsenergylett.8b01562CrossRefGoogle Scholar
Knight, A. J., Wright, A. D., Patel, J. B., McMeekin, D. P., Snaith, H. J., Johnston, M. B., and Herz, L. M., ACS Energy Lett. 4 (1), 7584 (2019).10.1021/acsenergylett.8b02002CrossRefGoogle Scholar
Huang, W., Yoon, S. J., and Sapkota, P., Appl, ACS. Energy Mater. 1 (6), 28592865 (2018).Google Scholar
Elmelund, T., Seger, B., Kuno, M., and Kamat, P. V., ACS Energy Lett. 5 (1), 5663 (2020).10.1021/acsenergylett.9b02265CrossRefGoogle Scholar
Yoon, S. J., Kuno, M., and Kamat, P. V., ACS Energy Lett. 2 (7), 15071514 (2017).10.1021/acsenergylett.7b00357CrossRefGoogle Scholar
Meggiolaro, D., Mosconi, E., and De Angelis, F., ACS Energy Lett. 4 (3), 779785 (2019).10.1021/acsenergylett.9b00247CrossRefGoogle Scholar
Brivio, F., Caetano, C., and Walsh, A., J. Phys. Chem. Lett. 7 (6), 10831087 (2016).10.1021/acs.jpclett.6b00226CrossRefGoogle Scholar
Yoon, S. J., Draguta, S., Manser, J. S., Sharia, O., Schneider, W. F., Kuno, M., and Kamat, P. V., ACS Energy Lett. 1 (1), 290296 (2016).10.1021/acsenergylett.6b00158CrossRefGoogle Scholar
van Wilderen, L. J. G. W., Lincoln, C. N., and van Thor, J. J., PLoS ONE 6 (3), e17373 (2011).10.1371/journal.pone.0017373CrossRefGoogle Scholar
Ambrosio, F., Meggiolaro, D., Mosconi, E., and De Angelis, F., J. Mater. Chem. A 8, 6882-6892 (2020).10.1039/D0TA00798FCrossRefGoogle Scholar
Noh, J. H., Im, S. H., Heo, J. H., Mandal, T. N., and Seok, S. I., Nano Lett. 13 (4), 17641769 (2013).10.1021/nl400349bCrossRefGoogle Scholar