Hostname: page-component-76fb5796d-x4r87 Total loading time: 0 Render date: 2024-04-25T12:42:56.544Z Has data issue: false hasContentIssue false

A Simple Approach in the Synthesis of Geometrically Tunable Nano-size Hollow Silicate Particles and the evaluation for Thermal Energy Saving Applications

Published online by Cambridge University Press:  10 May 2016

Rudder T. Wu
Affiliation:
Atomic Network Materials Group, International Center for Materials Nanoarchitectonics (MANA), National Institute for Materials Science (NIMS), Tsukuba, Ibaraki 305-0044 Japan
Raymond V. Rivera-Virtudazo*
Affiliation:
Global Research Center for Environment and Energy Based on Nanomaterials Science (GREEN), National Institute for Materials Science (NIMS), Namiki, Tsukuba, Ibaraki 305-0044 Japan
Takao Mori
Affiliation:
Atomic Network Materials Group, International Center for Materials Nanoarchitectonics (MANA), National Institute for Materials Science (NIMS), Tsukuba, Ibaraki 305-0044 Japan
*
Get access

Abstract

A simplified procedure of synthesizing nano-sized hollow silicate particles (NHSPs) of 80-200 nm in average diameter and approximately 30 nm in wall thickness via (soft template) soluble-poly(methacrylic acid) sodium salt (NaPMA) is presented here. The process is easily scalable and can be carried out at ambient temperature. When deposited as thin (nanolayer) film, NHSPs show good transparency in visible spectra range and good sorption of CO2 for thermal energy efficiency especially in the field of thermal insulation application.

Type
Articles
Copyright
Copyright © Materials Research Society 2016 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

GarcÃa-MartÃnez, J., and Wang, Z. L., Nanotechnology for the energy challenge (Wiley, 2013).Google Scholar
Lai, X., Halpert, J. E., and Wang, D., Energy Environ. Sci. 5, 56045618 (2012).Google Scholar
Qi, G., Wang, Y., Estevez, L., Duan, X., Anako, N., Park, A.-H. A., Li, W., Jones, C. W., and Giannelis, E. P., Energy Environ. Sci. 4, 444452 (2011).Google Scholar
Fuji, M., and Takai, C., “Application 59-superior thermal insulation film with transparency achieved by hollow silica nanoparticles,” in Nanoparticle technology handbook (second edition), Yokoyama, M. H. N. N., ed. (Elsevier, 2012), pp. 679684.Google Scholar
Chhajed, S., Poxson, D. J., Yan, X., Cho, J., Schubert, E. F., Welser, R. E., Sood, A. K., and Kim, J. K., Applied physics express 4, 052503 (2011).Google Scholar
Hu, J., Chen, M., Fang, X., and Wu, L., Chem. Soc. Rev. 40, 54725491 (2011).Google Scholar
D’Acunzi, M., Mammen, L., Singh, M., Deng, X., Roth, M., Auernhammer, G. K., Butt, H.-J., and Vollmer, D., Faraday Discuss. 146, 3548 (2010).Google Scholar
Blumm, J., Lindemann, A., and Min, S., Thermochim. Acta 455, 2629 (2007).Google Scholar
Woo, H., and Char, K., Macromolecular Research 21, 10041010 (2013).Google Scholar
Du, Y., Luna, L. E., Tan, W. S., Rubner, M. F., and Cohen, R. E., ACS Nano 4, 43084316 (2010).Google Scholar
Wang, X., Akhmedov, N. G., Duan, Y., Luebke, D., and Li, B., J.Mater.Chem.A 1, 29782982 (2013).Google Scholar
Masalov, V., Sukhinina, N., Kudrenko, E., and Emelchenko, G., Nanotechnology 22, 275718 (2011).Google Scholar
Kim, S.-K., and Kim, Y.-J., Thermochim. Acta 468, 69 (2008).CrossRefGoogle Scholar
Incropera, F. P., Fundamentals of heat and mass transfer (John Wiley, 2007).Google Scholar
Kamitsuji, K., Ueno, S., Suzuki, H., Kimura, Y., Sato, T., Tanigaki, T., Kido, O., Kurumada, M., and Kaito, C., A&A 422, 975979 (2004).Google Scholar
Virtudazo, R. V. R., Fuji, M., Takai, C., and Shirai, T., Nanotechnology 23, 485608 (2012).Google Scholar
Li, Z.-Z., Wen, L.-X., Shao, L., and Chen, J.-F., J. Controlled Release 98, 245254 (2004).Google Scholar
Cui, Y. Q., and Riffat, S., Applied Mechanics and Materials 71, 19671970 (2011).Google Scholar
Virtudazo, R.V.R., Lin, Y., and Wu, R., RSC Adv., 2015, DOI:10.1039/c5ra18267k.Google Scholar