Hostname: page-component-78c5997874-fbnjt Total loading time: 0 Render date: 2024-11-17T19:31:39.465Z Has data issue: false hasContentIssue false

Self-Driven Graphene Tearing and Peeling: A Fully Atomistic Molecular Dynamics Investigation

Published online by Cambridge University Press:  30 January 2018

Alexandre F. Fonseca*
Affiliation:
Applied Physics Department, Institute of Physics “Gleb Wataghin”, University of Campinas - UNICAMP, Campinas, São Paulo, CEP13083-859, Brazil.
Douglas S. Galvão
Affiliation:
Applied Physics Department, Institute of Physics “Gleb Wataghin”, University of Campinas - UNICAMP, Campinas, São Paulo, CEP13083-859, Brazil. Center for Computational Engineering and Sciences, UNICAMP, Campinas, São Paulo, Brazil.
Get access

Abstract

In spite of years of intense research, graphene continues to produce surprising results. Recently, it was experimentally observed that under certain conditions graphene can self-drive its tearing and peeling from substrates. This process can generate long, micrometer sized, folded nanoribbons without the action of any external forces. Also, during this cracking-like propagation process, the width of the graphene folded ribbon continuously decreases and the process only stops when the width reaches about few hundreds nanometers in size. It is believed that interplay between the strain energy of folded regions, breaking of carbon-carbon covalent bonds, and adhesion of graphene-graphene and graphene-substrate are the most fundamental features of this process, although the detailed mechanisms at atomic scale remain unclear. In order to gain further insights on these processes we carried out fully atomistic reactive molecular dynamics simulations using the AIREBO potential as available in the LAMMPS computational package. Although the reported tearing/peeling experimental observations were only to micrometer sized structures, our results showed that they could also occur at nanometer scale. Our preliminary results suggest that the graphene tearing/peeling process originates from thermal energy fluctuations that results in broken bonds, followed by strain release that creates a local elastic wave that can either reinforce the process, similar to a whip cracking propagation, or undermine it by producing carbon dangling bonds that evolve to the formation of bonds between the two layers of graphene. As the process continues in time and the folded graphene decreases in width, the carbon-carbon bonds at the ribbon edge and interlayer bonds get less stressed, thermal fluctuations become unable to break them and the process stops.

Type
Articles
Copyright
Copyright © Materials Research Society 2018 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Novoselov, K. S., Jiang, D., Schedin, F., Booth, T. J., Khotkevich, V. V., Morozov, S. V., Geim, A. K., Proc. Natl. Acad. Sci. U.S.A. 102, 10451 (2005).CrossRefGoogle Scholar
Lee, C., Wei, X., Kysar, J. W. and Hone, J., Science 321, 385 (2008).Google Scholar
Castro Neto, A. H., Guinea, F., Peres, N. M. R., Novoselov, K. S. and Geim, A. K., Rev. Mod. Phys. 81, 109 (2009).Google Scholar
Park, S. and Ruoff, R. S., Nat. Nanotechnol. 4, 217 (2009).Google Scholar
Balog, R., Jørgensen, B., Nilsson, L., Andersen, M., Rienks, E., Bianchi, M., Fanetti, M., Lægsgaard, E., Baraldi, A., Lizzit, S., Sljivancanin, Z., Besenbacher, F., Hammer, B., Pedersen, T. G., Hofmann, P., and Hornekær, L., Nat. Mater. 9, 315 (2010).Google Scholar
Baughman, R.H., Eckhardt, H., Kertesz, M., J. Chem. Phys. 87, 6687 (1987).CrossRefGoogle Scholar
Edwards, R. S. and Coleman, K. S., Nanoscale 5, 38 (2013).Google Scholar
Akinwande, D., Brennan, C. J., Bunch, J. S., Egberts, P., Felts, J. R., Gao, H., Huang, R., Kim, J. –S., Li, T., Li, Y., Liechti, K. M., Lu, N., Park, H. S., Reed, E. J., Wang, P., Yakobson, B. I., Zhang, T., Zhang, Y. –W., Zhou, Y. and Zhu, Y., Extreme Mechanics Letters 13, 42 (2017).Google Scholar
Li, X., Tao, L., Chen, Z., Fang, H., Li, X., Wang, X., Xu, J. –B. and Zhu, H., Appl. Phys. Rev. 4, 021306 (2017).CrossRefGoogle Scholar
Fonseca, A. F., Liang, T., Zhang, D., Choudhary, K., Phillpot, S. R. and Sinnott, S. B., ACS Appl. Mater. Interfaces 9, 33288 (2017).Google Scholar
Amorim, B., de Juan, A. Cortijo F., Grushin, A. G., Guinea, F., Gutiérrez-Rubio, A., Ochoa, H., Parente, V., Roldán, R., San-Jose, P., Schiefele, J., Sturla, M. and Vozmediano, M. A. H., Phys. Rep. 617, 1 (2016).Google Scholar
Muniz, A. R. and Fonseca, A. F., J. Phys. Chem. C 119, 17458 (2015).Google Scholar
Papageorgiou, D. G., Kinloch, I. A. and Young, Robert J., Progress in Materials Science 90, 75 (2017).Google Scholar
Zhang, T., Li, X. and Gao, H., Int. J. Fract. 196, 1 (2015).Google Scholar
Annett, J. and Cross, G. L. W., Nature 535, 271 (2016).Google Scholar
Hamm, E., Reis, P., Leblanc, M., Roman, B. and Cerda, E., Nature Materials 7, 386 (2008).Google Scholar
Brenner, D. W., Shenderova, O. A., Harrison, J. A., Stuart, S. J., Ni, B. and Sinnott, S. B., J. Phys.: Condens. Matter 14, 783 (2002).Google Scholar
LAMMPS - Molecular Dynamics Simulator. Available at http://lammps.sandia.gov (accessed 9 December 2017).Google Scholar
Goriely, A. and McMillen, T., Phys. Rev. Lett. 88, 244301 (2002).Google Scholar