Hostname: page-component-8448b6f56d-xtgtn Total loading time: 0 Render date: 2024-04-23T10:01:24.966Z Has data issue: false hasContentIssue false

Pulsed-Metal Organic Chemical Vapor Deposition (PMOCVD) for Growth of Single Phase Wurtzite MgxZn1-xO Epitaxial Film with High Mg Content (x=0.51)

Published online by Cambridge University Press:  15 February 2016

Fikadu Alema*
Affiliation:
Agnitron Technology Incorporated, Eden Prairie, MN55346, U.S.A.
Oleg Ledyaev
Affiliation:
Agnitron Technology Incorporated, Eden Prairie, MN55346, U.S.A.
Ross Miller
Affiliation:
Agnitron Technology Incorporated, Eden Prairie, MN55346, U.S.A.
Valeria Beletsky
Affiliation:
Agnitron Technology Incorporated, Eden Prairie, MN55346, U.S.A.
Andrei Osinsky
Affiliation:
Agnitron Technology Incorporated, Eden Prairie, MN55346, U.S.A.
Winston V. Schoenfeld
Affiliation:
CREOL, The College of Optics and Photonics, University of Central Florida, 4000 Central Florida Blvd., Orlando, FL 32816, U.S.A.
Get access

Abstract

Pulsed metal organic chemical vapor deposition (PMOCVD) was used to grow high Mg content, high quality, wurtzite MgxZn1-xO (MgZnO) epitaxial film to realize photodetectors and emitters in the solar blind spectral window. MgZnO films with various Mg contents were deposited on c-plane Al2O3 with and without AlN buffer layer. The band gap of the films range from 3.24 eV to 4.49 eV, corresponding to fraction of Mg between x=0.0 to x=0.51, as determined by Rutherford backscattering spectroscopy (RBS). Cathodoluminescence (CL) measurement showed a linear blue shift in the spectral peak position of MgxZn1-xO with an increase in x. No multi-absorption edge or CL band splitting was observed, indicating the phase purity of the films and was confirmed by XRD analysis. The surface quality of the films has improved with the increase in Mg content. To the best of our knowledge, the current result shows the highest Mg content (x=0.51), high quality, single phase wurtzite MgZnO epitaxial film ever grown by MOCVD. This is realized due to the non-equilibrium behavior of PMOCVD in which radicals that are formed during the growth process will have insufficient time to reach equilibrium.

Type
Articles
Copyright
Copyright © Materials Research Society 2016 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Choopun, S., Vispute, R.D., Yang, W., Sharma, R.P., Venkatesan, T., Shen, H., Appl. Phys. Lett. 80, 1529 (2002).Google Scholar
Janotti, A., Van de Walle, C.G., Rep. Prog. Phys. 72, 126501 (2009).Google Scholar
Yang, W., Vispute, R.D., Choopun, S., Sharma, R.P., Venkatesan, T., Shen, H., Appl. Phys. Lett. 78, 2787 (2001).Google Scholar
Ohtomo, A., Kawasaki, M., Koida, T., Masubuchi, K., Koinuma, H., Sakurai, Y., Yoshida, Y., Yasuda, T., Segawa, Y., Appl. Phys. Lett. 72, 2466 (1998).Google Scholar
Yang, W., Hullavarad, S.S., Nagaraj, B., Takeuchi, I., Sharma, R.P., Venkatesan, T., Vispute, R.D., Shen, H., Appl. Phys. Lett. 82, 3424 (2003).Google Scholar
Huso, J., Morrison, J.L., Che, H., Sundararajan, J.P., Yeh, W.J., McIlroy, D., Williams, T.J., Bergman, L., J. Nanomater. 2011, 1 (2011).Google Scholar
Sharma, A.K., Narayan, J., Muth, J.F., Teng, C.W., Jin, C., Kvit, A., Kolbas, R.M., Holland, O.W., Appl. Phys. Lett. 75, 3327 (1999).Google Scholar
Takagi, T., Tanaka, H., Fujita, S., Fujita, S., Jpn. J. Appl. Phys. 42, L401 (2003).CrossRefGoogle Scholar
Liu, Z.L., Mei, Z.X., Zhang, T.C., Liu, Y.P., Guo, Y., Du, X.L., Hallen, A., Zhu, J.J., Kuznetsov, A.Y., J. Cryst. Growth 311, 4356 (2009).Google Scholar
Ju, Z.G., Shan, C.X., Jiang, D.Y., Zhang, J.Y., Yao, B., Zhao, D.X., Shen, D.Z., Fan, X.W., Appl. Phys. Lett. 93, 173505 (2008).Google Scholar
Park, W.I., Yi, G.-C., Jang, H.M., Appl. Phys. Lett. 79, 2022 (2001).CrossRefGoogle Scholar
Caglar, M., Caglar, Y., Ilican, S., J. Optoelectron. Adv. Mater. 8, 1410. (2006)Google Scholar
Liu, K.W., Shen, D.Z., Shan, C.X., Zhang, J.Y., Jiang, D.Y., Zhao, Y.M., Yao, B., Zhaol, D.X., J. Phys. D: Appl. Phys. 41, 125104 (2008).Google Scholar
Mayer, M., SIMNRA User’s Guide. Max-Planck-Institut fur Plasmaphysik, Garching, Germany, 1997.Google Scholar
Che, H., Huso, J., Morrison, J.L., Thapa, D., Huso, M., Yeh, W.J., Tarun, M.C., McCluskey, M.D., Bergman, L., J. Nanomater. 2012, 1(2012).Google Scholar
Mitsuyu, T., Ono, S., Wasa, K., J. Appl. Phys. 51 2464 (1980).Google Scholar
Kang, S.W., Kim, Y.Y., Ahn, C.H., Mohanta, S., Cho, H.K., J. Mater. Sci.- Mater. Electron. 19, 755 (2008).Google Scholar
Jin, C., Narayan, R., Tiwari, A., Zhou, H., Kvit, A., Narayan, J., Mater. Sci. Eng. B 117, 348 (2005.CrossRefGoogle Scholar