Hostname: page-component-77c89778f8-cnmwb Total loading time: 0 Render date: 2024-07-17T13:05:17.790Z Has data issue: false hasContentIssue false

Plasmon-enhanced photocatalysis: Ag/TiO2 nanocomposite for the photochemical reduction of bicarbonate to formic acid

Published online by Cambridge University Press:  03 January 2019

Hanqing Pan
Affiliation:
Department of Chemistry, New Mexico Institute of Mining and Technology, 801 Leroy Place, Socorro, NM87801
Michael D. Heagy*
Affiliation:
Department of Chemistry, New Mexico Institute of Mining and Technology, 801 Leroy Place, Socorro, NM87801
Get access

Abstract

Plasmonic metallic nanoparticles can significantly enhance the catalytic efficiency of semiconductors via plasmonic photocatalysis. In this study, a hybrid Ag/TiO2 photocatalyst was synthesized and tested for the photochemical reduction of bicarbonate to value-added formic acid. It was found that under solar irradiation, TiO2 is not very efficient, but formate production is significantly increased with the addition of silver nanoparticles. Under 365 nm irradiation, the photocatalytic efficiency of TiO2 is enhanced, but no effect was observed with the addition of silver nanoparticles. Under solar irradiation, Ag/TiO2 reached an apparent quantum efficiency (AQE) of 7.78 ± 0.04%, the highest AQE observed so far. Enhanced photocatalytic activity is attributed to the synergistic effect between UV photon excitation of TiO2 and surface plasmon resonance enhancement. To elucidate the mechanism of plasmon-enhanced photocatalysis, experiments were performed under solar irradiation and 365 nm irradiation. We propose that photo-excited electrons are transferred from above the Fermi level of the metal nanoparticle to the conduction band of the semiconductor through plasmon-induced electron transfer.

Type
Articles
Copyright
Copyright © Materials Research Society 2019 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Habisreutinger, S. N.; Schmidt-Mende, L.; Stolarczyk, J. K., Photocatalytic Reduction of CO2 on TiO2 and Other Semiconductors. Angewandte Chemie International Edition 2013, 52 (29), 7372-7408.CrossRefGoogle ScholarPubMed
O’Regan, B.; Xiaoe, L.; Ghaddar, T., Dye adsorption, desorption, and distribution in mesoporous TiO2 films, and its effects on recombination losses in dye sensitized solar cells. Energy & Environmental Science 2012, 5 (5), 7203-7215.CrossRefGoogle Scholar
Wang, M.; Bai, J.; Le Formal, F.; Moon, S.-J.; Cevey-Ha, L.; Humphry-Baker, R.; Grätzel, C.; Zakeeruddin, S. M.; Grätzel, M., Solid-State Dye-Sensitized Solar Cells using Ordered TiO2 Nanorods on Transparent Conductive Oxide as Photoanodes. The Journal of Physical Chemistry C 2012 , 116 (5), 3266-3273.CrossRefGoogle Scholar
Sun, T.; Fan, J.; Liu, E.; Liu, L.; Wang, Y.; Dai, H.; Yang, Y.; Hou, W.; Hu, X.; Jiang, Z., Fe and Ni co-doped TiO2 nanoparticles prepared by alcohol-thermal method: Application in hydrogen evolution by water splitting under visible light irradiation. Powder Technology 2012 , 228, 210-218.CrossRefGoogle Scholar
Fan, J.; Liu, E.-z.; Tian, L.; Hu, X.-y.; He, Q.; Sun, T., Synergistic Effect of N and Ni 2 + on Nanotitania in Photocatalytic Reduction of CO 2. Journal of Environmental Engineering 2011 , 137 (3), 171-176.CrossRefGoogle Scholar
Bian, Z.; Tachikawa, T.; Kim, W.; Choi, W.; Majima, T., Superior Electron Transport and Photocatalytic Abilities of Metal-Nanoparticle-Loaded TiO2 Superstructures. The Journal of Physical Chemistry C 2012 , 116 (48), 25444-25453.CrossRefGoogle Scholar
Yanagida, S.; Makino, M.; Ogaki, T.; Yasumori, A., Preparation of Pd–Pt Co-Loaded TiO2 Thin Films by Sol-Gel Method for Hydrogen Gas Sensing. Journal of The Electrochemical Society 2012 , 159 (12), B845-B849.CrossRefGoogle Scholar
Li, X.; Zhuang, Z.; Li, W.; Pan, H., Photocatalytic reduction of CO2 over noble metal-loaded and nitrogen-doped mesoporous TiO2. Applied Catalysis A: General 2012, 429-430, 31-38.CrossRefGoogle Scholar
Sun, L.; Li, J.; Wang, C.; Li, S.; Lai, Y.; Chen, H.; Lin, C., Ultrasound aided photochemical synthesis of Ag loaded TiO2 nanotube arrays to enhance photocatalytic activity. Journal of Hazardous Materials 2009 , 171 (1), 1045-1050.CrossRefGoogle ScholarPubMed
Houšková, V.; Štengl, V.; Bakardjieva, S.; Murafa, N.; Tyrpekl, V., Efficient gas phase photodecomposition of acetone by Ru-doped Titania. Applied Catalysis B: Environmental 2009 , 89 (3), 613-619.CrossRefGoogle Scholar
Kooij, E. S.; Ahmed, W.; Zandvliet, H. J. W.; Poelsema, B., Localized Plasmons in Noble Metal Nanospheroids. The Journal of Physical Chemistry C 2011 , 115 (21), 10321-10332.CrossRefGoogle Scholar
Liu, E.; Kang, L.; Wu, F.; Sun, T.; Hu, X.; Yang, Y.; Liu, H.; Fan, J., Photocatalytic Reduction of CO2 into Methanol over Ag/TiO2 Nanocomposites Enhanced by Surface Plasmon Resonance. Plasmonics 2014 , 9 (1), 61-70.CrossRefGoogle Scholar
Liu, E.; Hu, Y.; Li, H.; Tang, C.; Hu, X.; Fan, J.; Chen, Y.; Bian, J., Photoconversion of CO2 to methanol over plasmonic Ag/TiO2 nano-wire films enhanced by overlapped visible-light-harvesting nanostructures. Ceramics International 2015 , 41 (1, Part B), 1049-1057.CrossRefGoogle Scholar
Kočí, K.; Matějů, K.; Obalová, L.; Krejčíková, S.; Lacný, Z.; Plachá, D.; Čapek, L.; Hospodková, A.; Šolcová, O., Effect of silver doping on the TiO2 for photocatalytic reduction of CO2. Applied Catalysis B: Environmental 2010 , 96 (3–4), 239-244.CrossRefGoogle Scholar
Kong, D.; Tan, J. Z. Y.; Yang, F.; Zeng, J.; Zhang, X., Electrodeposited Ag nanoparticles on TiO2 nanorods for enhanced UV visible light photoreduction CO2 to CH4. Applied Surface Science 2013 , 277, 105-110.CrossRefGoogle Scholar
Pan, H.; Steiniger, A.; Heagy, M. D.; Chowdhury, S., Efficient production of formic acid by simultaneous photoreduction of bicarbonate and oxidation of glycerol on gold-TiO2 composite under solar light. Journal of CO2 Utilization 2017 , 22, 117-123.CrossRefGoogle Scholar
Pan, H.; Chowdhury, S.; Premachandra, D.; Olguin, S.; Heagy, M. D., Semiconductor Photocatalysis of Bicarbonate to Solar Fuels: Formate Production from Copper(I) Oxide. ACS Sustainable Chemistry & Engineering 2017.Google Scholar
Ledwith, D. M.; Whelan, A. M.; Kelly, J. M., A rapid, straight-forward method for controlling the morphology of stable silver nanoparticles. Journal of Materials Chemistry 2007 , 17 (23), 2459-2464.CrossRefGoogle Scholar
Mukherjee, S.; Libisch, F.; Large, N.; Neumann, O.; Brown, L. V.; Cheng, J.; Lassiter, J. B.; Carter, E. A.; Nordlander, P.; Halas, N. J., Hot Electrons Do the Impossible: Plasmon-Induced Dissociation of H2 on Au. Nano Letters 2013 , 13 (1), 240-247.CrossRefGoogle Scholar
He, W.; Jia, H.; Cai, J.; Han, X.; Zheng, Z.; Wamer, W. G.; Yin, J.-J., Production of Reactive Oxygen Species and Electrons from Photoexcited ZnO and ZnS Nanoparticles: A Comparative Study for Unraveling their Distinct Photocatalytic Activities. The Journal of Physical Chemistry C 2016 , 120 (6), 3187-3195.CrossRefGoogle Scholar
Molinari, A.; Samiolo, L.; Amadelli, R., EPR spin trapping evidence of radical intermediates in the photo-reduction of bicarbonate/CO2 in TiO2 aqueous suspensions. Photochemical & Photobiological Sciences 2015 , 14 (5), 1039-1046.CrossRefGoogle ScholarPubMed
Leonard, D. P.; Pan, H.; Heagy, M. D., Photocatalyzed Reduction of Bicarbonate to Formate: Effect of ZnS Crystal Structure and Positive Hole Scavenger. ACS applied materials & interfaces 2015 , 7 (44), 24543-24549.CrossRefGoogle ScholarPubMed
Di Valentin, C.; Fittipaldi, D., Hole Scavenging by Organic Adsorbates on the TiO2 Surface: A DFT Model Study. The Journal of Physical Chemistry Letters 2013 , 4 (11), 1901-1906.CrossRefGoogle ScholarPubMed
Johnson, P. B.; Christy, R. W., Optical Constants of the Noble Metals. Physical Review B 1972 , 6 (12), 4370-4379.CrossRefGoogle Scholar
Xuming, Z.; Yu Lim, C.; Ru-Shi, L.; Din Ping, T., Plasmonic photocatalysis. Reports on Progress in Physics 2013 , 76 (4), 046401.Google Scholar
Awazu, K.; Fujimaki, M.; Rockstuhl, C.; Tominaga, J.; Murakami, H.; Ohki, Y.; Yoshida, N.; Watanabe, T., A Plasmonic Photocatalyst Consisting of Silver Nanoparticles Embedded in Titanium Dioxide. Journal of the American Chemical Society 2008 , 130 (5), 1676-1680.CrossRefGoogle ScholarPubMed
Bumajdad, A.; Madkour, M., Understanding the superior photocatalytic activity of noble metals modified titania under UV and visible light irradiation. Physical Chemistry Chemical Physics 2014 , 16 (16), 7146-7158.CrossRefGoogle ScholarPubMed
Christopher, P.; Ingram, D. B.; Linic, S., Enhancing Photochemical Activity of Semiconductor Nanoparticles with Optically Active Ag Nanostructures: Photochemistry Mediated by Ag Surface Plasmons. The Journal of Physical Chemistry C 2010 , 114 (19), 9173-9177.CrossRefGoogle Scholar
Clavero, C., Plasmon-induced hot-electron generation at nanoparticle/metal-oxide interfaces for photovoltaic and photocatalytic devices. Nature Photonics 2014 , 8 (2), 95-103.CrossRefGoogle Scholar
Furube, A.; Du, L.; Hara, K.; Katoh, R.; Tachiya, M., Ultrafast Plasmon-Induced Electron Transfer from Gold Nanodots into TiO2 Nanoparticles. Journal of the American Chemical Society 2007 , 129 (48), 14852-14853.CrossRefGoogle ScholarPubMed