Hostname: page-component-7c8c6479df-24hb2 Total loading time: 0 Render date: 2024-03-28T17:06:00.677Z Has data issue: false hasContentIssue false

Novel SnSb2S4 Thin Films Obtained by Chemical Bath Deposition using Tartaric Acid as Complexing Agent for Their Application as Absorber in Solar Cells

Published online by Cambridge University Press:  11 July 2019

L.A. Rodríguez-Guadarrama
Affiliation:
Sustentabilidad de los Recursos Naturales y Energía, CINVESTAV Unidad Saltillo, Av. Industria Metalúrgica 1062, Ramos Arizpe25900, Coahuila, México.
I.L. Alonso-Lemus
Affiliation:
CONACYT, Sustentabilidad de los Recursos Naturales y Energía, CINVESTAV Unidad Saltillo, Av. Industria Metalúrgica 1062, Ramos Arizpe25900, Coahuila, México.
J. Campos-Álvarez
Affiliation:
Instituto de Energías Renovables, UNAM, Priv. Xochicalco S/N, Temixco62580, Morelos, México.
J. Escorcia-García*
Affiliation:
CONACYT-CINVESTAV, Unidad Saltillo, Av. Industria Metalúrgica 1062, Ramos Arizpe25900, Coahuila, México.
Get access

Abstract

Ternary Sn-Sb-S thin films with remarkable optical, electrical and structural properties were developed by chemical bath deposition. Tin and antimony chlorides and thioacetamide were used as tin, antimony, and sulfur ion sources, respectively, while tartaric acid was used as a complexing agent. XRD analysis of as-deposited films showed a combination of binary phases of SnS, Sn2S3, and Sb2S3, while after thermal treatment in nitrogen at 400 °C, the films became crystalline showing well-defined reflections of the ternary SnSb2S4. The heating also influenced the morphology, compactness, and thickness of the films. On the other hand, all the films showed an absorption coefficient higher than 104 cm-1, while the optical band gap of the as-deposited film decreased from 1.49 to 1.37 eV after heating at 400 °C. In addition, the photoconductivity of the films prior to heating was of 10-9 Ω-1 cm-1, while after that at 400 °C was of 10-7 Ω-1 cm-1. The evaluation of the ternary film in solar cells gave an open-circuit voltage Voc of 448 mV and short-circuit current density of Jsc of 2.4 mA/cm2.

Type
Articles
Copyright
Copyright © Materials Research Society 2019 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Ali, N., Ajmal, S., Shah, M., Ahmed, R., Bakhtiar, H., and Shaari, A., Chalcogenide Lett. 11, 503-508 (2014).Google Scholar
Mellouki, I., Mami, A., Bennaji, N., and Fadhli, Y., Thermochim. Acta 670, 123-127 (2018).CrossRefGoogle Scholar
Gassoumi, A. and Kanzari, M., J. Optoelectron. Adv. Mater. 11, 414-420 (2009).Google Scholar
Khedmi, N., Rabeh, M.B., Abdelkadher, D., Ousgi, F., and Kanzari, M., Cryst. Res. Technol. 50, 69-76 (2014).CrossRefGoogle Scholar
Fadhli, Y., Rabhi, A., and Kanzari, M., Acta Metall. Sin.-Engl. Lett. 28, 56-662 (2015).Google Scholar
Ali, N., Hussain, S.T., Khan, Y., Ahmad, N., Iqbal, M.A., and Abbas, S.M., Mater. Lett. 100, 148-151 (2013).CrossRefGoogle Scholar
Dittrich, H., Stadler, A., Topa, D., Schimper, H.J., and Basch, A., Phys. Status Solidi A 206, 1034-1041 (2009).CrossRefGoogle Scholar
Nekrasov, Y., Kulakov, M.P., and Sokolovskaya, Zh. D., Zh.D, Geochem. Int. 1, 1-8 (1975).Google Scholar
Kim, J., Kim, J., Yoon, S., Kang, J.Y., Jeon, C.W., and Jo, W., J. Phys. Chem. C. 122, 3523-3532 (2018).CrossRefGoogle Scholar
Safonova, M., Nair, P.K., Mellikov, E., Garcia, A.R., Kerm, K., Revathi, N., Romann, T., Mikli, V., and Volobujeva, O., J. Mater. Sci.-Mater. Electron. 25, 3160-3165 (2014).CrossRefGoogle Scholar
Escorcia-García, J., Domínguez-Díaz, M., Hernández-Granados, A., and Martínez, H., MRS Adv. 3, 3307-3313 (2018).CrossRefGoogle Scholar
Bennaji, N., Lahouli, R., Fadhli, Y., Mellouki, I., Kanzari, M., Khirouni, K., Yacoubi, N., and Amlouk, M., Sensor. Actuat. A-Phys. 281, 67-75 (2018).CrossRefGoogle Scholar
Mellouki, I., Mami, A., Bennaji, N., and Fadhli, Y., Thermochim. Acta 670, 123-127 (2018).CrossRefGoogle Scholar
Abdelkader, D., Akkari, F.C., Khemiri, N., Miloua, R., Antoni, F., Gallas, B., and Kanzari, M., Physica B: Condensed Matter. 546, 33-43 (2018).CrossRefGoogle Scholar
Chalapathi, U., Poornaprakash, B., Ahn, C.-H. and Si-HyunPark, , Mater. Sci. Semicond. Process. 84, 138-143 (2018).CrossRefGoogle Scholar
Mushtaq, S., Ismail, B., Zeb, M.A., Kissinger, N.J.S. and Zeb, A., J. Alloy. Compd. 632, 723-728 (2015).CrossRefGoogle Scholar
Wang, X.M., Li, J.M., Liu, W.F., Yang, S.F. and Zhu, C.F., Nanoscale 9, 3386-3390 (2017).CrossRefGoogle ScholarPubMed
Ismail, B., Mushtaq, S. and Khan, A., Chalcogenide Lett. 11, 37-45 (2014).Google Scholar
González-Lúa, R., Escorcia-García, J., Pérez-Martínez, D., Nair, M.T.S., Campos, J., and Nair, P.K., ECS J. Solid State Sci. Technol. 4(3), Q9-Q16 (2015).CrossRefGoogle Scholar
Schröder, D.K., Semiconductor Material and Device Characterization, 3rd ed. (Wiley, New York, 1990) p. 597.Google Scholar
Tauc, J., Mat. Res. Bull. 3, 37-46 (1968).CrossRefGoogle Scholar
Sinsermsuksakul, P., Sun, L.Z., Lee, S.W., Park, H.H., Kim, S.B., Yang, C.X., and Gordon, R.G., Adv. Energy Mater. 4, 7 (2014).CrossRefGoogle Scholar