Hostname: page-component-cd9895bd7-mkpzs Total loading time: 0 Render date: 2024-12-26T23:45:35.308Z Has data issue: false hasContentIssue false

A New Nanoindentation Protocol for Identifying the Elasticity of Undamaged Extracellular Bone Tissue

Published online by Cambridge University Press:  15 February 2016

Irina Furin
Affiliation:
Institute for Mechanics of Materials and Structures, TU Wien - Vienna University of Technology, Austria
Maria-Ioana Pastrama
Affiliation:
Institute for Mechanics of Materials and Structures, TU Wien - Vienna University of Technology, Austria
Hawraa Kariem
Affiliation:
Institute for Mechanics of Materials and Structures, TU Wien - Vienna University of Technology, Austria
Krzysztof W. Luczynski
Affiliation:
Institute for Mechanics of Materials and Structures, TU Wien - Vienna University of Technology, Austria
Olaf Lahayne
Affiliation:
Institute for Mechanics of Materials and Structures, TU Wien - Vienna University of Technology, Austria
Christian Hellmich*
Affiliation:
Institute for Mechanics of Materials and Structures, TU Wien - Vienna University of Technology, Austria
*
1Corresponding author E-mail address: christian.hellmich@tuwien.ac.at (Christian Hellmich)
Get access

Abstract

While the quest for understanding and even mimicking biological tissue has propelled, over the last decades, more and more experimental activities at the micro and nanoscales, the appropriate evaluation and interpretation of respective test results has remained a formidable challenge. As a contribution to tackling this challenge, we here describe a new method for identifying, from nanoindentation, the elasticity of the undamaged extracellular bone matrix. The underlying premise is that the tested bovine bone sample is either initially damaged (i.e. exhibits micro-cracks a priori) or that such micro-cracks are actually induced by the nanoindentation process itself, or both. Then, (very many) indentations may relate to either an intact material phase (which is located sufficiently far away from micro-cracks), or to differently strongly damaged material phases. Corresponding elastic phase properties are identified from the statistical evaluation of the measured indentation moduli, through representation of their histogram as a weighted sum of Gaussian distribution functions. The resulting undamaged elastic modulus of bovine femoral extracellular bone matrix amounts to 31 GPa, a value agreeing strikingly well both with direct quasi-static modulus tests performed on SEM-FIB-produced micro-pillars (Luczynski et al., 2015), and with the predictions of a widely validated micromechanics model (Morin and Hellmich, 2014). Further confidence is gained through observing typical indentation imprints under Scanning Electron Microscopy (SEM), which actually confirms the existence of the two types of micro-cracks as described above.

Type
Articles
Copyright
Copyright © Materials Research Society 2016 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Oliver, W.C. and Pharr, G.M., J. Mater. Res. 7, 15641583 (1992).CrossRefGoogle Scholar
Rho, J.Y., Tsui, T.Y., and Pharr, G.M., Biomaterials 18 (20), 1325-1330 (1997).CrossRefGoogle Scholar
Rho, J.Y. and Roy, M.E., J. Biomed. Mat. Res. 45(1), 4854 (1999).3.0.CO;2-5>CrossRefGoogle Scholar
Zysset, P.K., Edward Guo, X., Edward Hoffler, C., Moore, K.E., and Goldstein, S.A., J. Biomech. 32 (10), 10051012 (1999).CrossRefGoogle Scholar
Hengsberger, S., Kulik, A., and Zysset, P.K., Bone 30 (1), 178184 (2002).CrossRefGoogle ScholarPubMed
Rho, J.Y., Zioupos, P., Currey, J.D., and Pharr, G.M., J. Biomech. 35 (2), 189198 (2002).CrossRefGoogle Scholar
Hoffler, C.E., Moore, K.E., Kozloff, K., Zysset, P.K., and Goldstein, S.A, J. Orthop. Res. 18 (3), 432437 (2000).CrossRefGoogle Scholar
Feng, L. and Jasiuk, I., J. Biomech. 44 (2), 313320 (2010).CrossRefGoogle Scholar
Wolfram, U., Wilke, H.J., and Zysset, P.K., Bone 46 (2), 348-54 (2010).CrossRefGoogle ScholarPubMed
Bembey, A.K., Oyen, M.L., Bushby, A.J., and Boyde, A., Philos. Mag. 86, 3335 (2006).CrossRefGoogle Scholar
Ashman, R.B., Cowin, S.C., Van Buskirk, W.C., and Rice, J.C., J. Biomech. 17, 349361 (1984).CrossRefGoogle Scholar
Lees, S., Heeley, J.D., and Cleary, P.F., Calcif. Tissue Int. 29 (1), 107-117 (1979).CrossRefGoogle Scholar
Lees, S., Ahern, J., and Leonard, M., J. Acoust. Soc. Am. 74, 2833 (1983).CrossRefGoogle Scholar
Zaoui, A., J. Eng. Mech. 128 (8), 808816 (2002).CrossRefGoogle Scholar
Drugan, W.J. and Willis, J.R., J. Mech. Phys. Solids 44 (4), 497524 (1996).CrossRefGoogle Scholar
Fedorov, F.I., Theory of Elastic Waves in Crystals (Springer Science and Business Media, New York, 1968).CrossRefGoogle Scholar
Kohlhauser, C. and Hellmich, C., Eng. Struct. 47, 115133 (2013).CrossRefGoogle Scholar
Fritsch, A. and Hellmich, C., J. Theor. Biol. 244 (4), 597620 (2007).CrossRefGoogle Scholar
Vuong, J. and Hellmich, C., J. Theor. Biol. 287, 115130 (2011).CrossRefGoogle Scholar
Malandrino, A., Fritsch, A., Lahayne, O., Kropik, K., Redl, H., and Noailly, J., Mater. Lett. 78, 154158 (2012).CrossRefGoogle Scholar
Luczynski, K.W., Steiger-Thirsfeld, A., Bernardi, J., Eberhardsteiner, J., and Hellmich, C., J. Mech. Beh. Biomed. 52, 5162 (2015).CrossRefGoogle Scholar
Schaffler, M., Pitchford, W., Choi, K., and Riddle, J., Bone 15 (5), 483488 (1994).CrossRefGoogle ScholarPubMed
Wenzel, T., Schaffler, M., and Fyhrie, D., Bone 19 (2), 8995 (1996).CrossRefGoogle ScholarPubMed
O'Brien, F.J, Taylor, D., Dickson, G.R., and Lee, T.C., J. Anat. 197 (3), 413-420 (2000).CrossRefGoogle Scholar
Chapurlat, R.D., Arlot, M., Burt-Pichat, B., Chavassieux, P., Roux, J.P., Portero-Muzy, N., and Delmas, P.D., J. Bone Miner. Res. 22 (10), 15021509 (2007).CrossRefGoogle Scholar
Tai, K., Ulm, F.-J., and Ortiz, C., Nano Lett. 6 (11), 25202525 (2006).CrossRefGoogle Scholar
Fritsch, A., Hellmich, C., and Dormieux, L., J. Theor. Biol. 260(2), 230252 (2009).CrossRefGoogle Scholar
Schwiedrzik, J., Raghavan, R., Bürki, A., LeNader, V., Wolfram, U., Michler, J., and Zysset, P.K., Nat. Mater. 13, 740747 (2014).CrossRefGoogle Scholar
Ritchie, R., Nat. Mater. 10, 817822 (2011).CrossRefGoogle Scholar
Constantinides, G. and Ulm, F.-J., J. Mech. Phys. Solids 55 (1), 6490 (2007).CrossRefGoogle Scholar
Ulm, F.-J., Vandamme, M., Bobko, C., Ortega, J.A., Tai, K., and Ortiz, C., J. Am. Ceram. Soc. 90 (9), 26772692 (2007).CrossRefGoogle Scholar
Vandamme, M. and Ulm, F.-J., PNAS 106 (26), 10552-10557 (2009).CrossRefGoogle Scholar
Morin, C. and Hellmich, C., Ultrasonics 54, 12511269 (2014).CrossRefGoogle Scholar
Fölsch, C., Mittelmeier, W., Bilderbeek, U., Timmesfeld, N., Von Garrel, T., and Matter, H.P, Transfus. Med. Hemother. 39 (1), 3640 (2011).CrossRefGoogle Scholar
Nazarian, A., Hermannsson, B.J., Muller, J., Zurakowski, D., and Snyder, B.D., J. Biomech. 42 (1), 82-86 (2009).CrossRefGoogle Scholar
Linde, F. and Sørensen, H.C.F., J. Biomech. 26 (10), 1249-52 (1993).CrossRefGoogle Scholar
Miller, M., Bobko, C., Vandamme, M., and Ulm, F.-J., Cement Concrete Res. 38, 467476 (2008).CrossRefGoogle Scholar
Reisinger, A.G., Pahr, D.H., and Zysset, P.K., J. Mech. Beh. Biomed. Mat. 4, 21132127 (2011).CrossRefGoogle Scholar
van Rietbergen, B., Weinans, H., Huiskes, R., and Odgaard, A., J. Biomech. 28 (1), 69-81 (1995).CrossRefGoogle Scholar
Constantinides, G., Ravi Chandran, K.S., Ulm, F.-J., and Van Vliet, K.J., Mater. Sci. Eng. A-Struct. 430, 189202 (2006).CrossRefGoogle Scholar
Kariem, H., Pastrama, M.-I.Roohani-Esfahani, S.I., Pivonka, P., Zreiqat, H., and Hellmich, C., Mat. Sci. Eng. C 46 553564 (2015).CrossRefGoogle Scholar
Weicker, K., Evolutionäre Algorithmen. Leitfäden der Informatik (Vieweg und Teubner Verlag, Wiesbaden, 2007; in German).Google Scholar
Katz, L.J., Yoon, H.S., Lipson, S., Maharidge, R., Meunier, A., and Christel, P., Calcif. Tissue Int. 36, 3136 (1984).CrossRefGoogle Scholar
Locke, M., J. Morphology 262, 546565 (2004).CrossRefGoogle Scholar
Bobji, M.S. and Biswas, S.K., J. Mater. Res. 13 (11), 3227-3233 (1998).CrossRefGoogle Scholar