Hostname: page-component-8448b6f56d-wq2xx Total loading time: 0 Render date: 2024-04-20T03:54:44.248Z Has data issue: false hasContentIssue false

Molecular Dynamics Simulation of Fission Fragment Damage in Nuclear Fuel and Surrogate Material

Published online by Cambridge University Press:  09 January 2017

Ram Devanathan*
Affiliation:
Energy and Environment Directorate, Pacific Northwest National Laboratory, Richland WA, 99352, U.S.A.
Get access

Abstract

We have performed classical molecular dynamics simulations of swift heavy ion damage, typical of fission fragments, in nuclear fuel (UO2) for energy deposition per unit length of 3.9 keV/nm. We did not observe amorphization. The damage mainly consisted of isolated point defects. Only about 1% of the displacements occur on the uranium sublattice. Oxygen Frenkel pairs are an order of magnitude more numerous than uranium Frenkel pairs in the primary damage state. In contrast, previous results show that the ratio of Frenkel pairs on the two sublattices is close to the stoichiometric ratio in ceria. These differences in the primary damage state may lead to differences in radiation response of UO2 and CeO2.

Type
Articles
Copyright
Copyright © Materials Research Society 2017 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Matzke, H., in Radiation Effects in Solids, edited by Sickafus, K.E., Kotomin, E.A., and Uberuaga, B.P., (Springer Netherlands, Dordrecht, 2007), pp. 401420.Google Scholar
Bruno, J. and Ewing, R.C., Elements 2, 343 (2006).Google Scholar
Burns, P.C., Ewing, R.C., and Navrotsky, A., Science 335, 1184 (2012).Google Scholar
Wiss, T., Hiernaut, J.-P., Roudil, D., Colle, J.-Y., Maugeri, E., Talip, Z., Janssen, A., Rondinella, V., Konings, R.J., and Matzke, H.-J., J. Nucl. Mater. 451, 198 (2014).Google Scholar
Ewing, R.C., Nature Materials 14, 252 (2015).Google Scholar
Yun, D., Ye, B., Oaks, A., Chen, W., Kirk, M., Rest, J., Yacout, A., and Stubbins, J., Nucl. Instrum. and Meth. B 272, 239 (2012).Google Scholar
Devanathan, R., Van Brutzel, L., Chartier, A., Gueneau, C., Mattsson, A.E., Tikare, V., Bartel, T., Besmann, T., Stan, M., and Van Uffelen, P., Energy Environ. Sci. 3, 1406 (2010).Google Scholar
Van Brutzel, L., Vincent-Aublant, E., and Delaye, J.-M., Nuclear Instrum. Meth. B 267, 3013 (2009).Google Scholar
Todorov, I.T., Smith, W., Trachenko, K., and Dove, M.T., J. Mater. Chem. 16, 1911 (2006).CrossRefGoogle Scholar
Basak, C., Sengupta, A., and Kamath, H., J. Alloys Compd. 360, 210 (2003).Google Scholar
Sayle, T.X.T., Parker, S.C., and Catlow, C.R.A., Surface Sci. 316, 329 (1994).Google Scholar
Ziegler, J., Biersack, J., and Littmark, U., The Stopping and Range of Ions in Matter, (Pergamon Press, New York, 1985) p. 40.Google Scholar
Essmann, U., Perera, L., Berkowitz, M.L., Darden, T., Lee, H., and Pedersen, L.G., J. Chem. Phys. 103, 8577 (1995).Google Scholar
Govers, K., Lemehov, S., Hou, M., Verwerft, M., J. Nucl. Mater. 366, 161 (2007).Google Scholar
Govers, K., Lemehov, S., Hou, M., Verwerft, M., J. Nucl. Mater. 376, 66 (2008).CrossRefGoogle Scholar
Yablinsky, C.A., Devanathan, R., Pakarinen, J., Gan, J., Severin, D., Trautmann, C., and Allen, T.R., J. Mater. Res. 30, 1473 (2015).Google Scholar
Humphrey, W., Dalke, A., and Schulten, K., J. Mol. Graphics 14, 33 (1996).Google Scholar
Sickafus, K., Minervini, L., Grimes, R., Valdez, J., Ishimaru, M., Li, F., McClellan, K., and Hartmann, T., Science 289, 748 (2000).Google Scholar
Weber, W. J., Radiation Effects, 83, 145 (1984).Google Scholar