Hostname: page-component-848d4c4894-r5zm4 Total loading time: 0 Render date: 2024-07-02T13:17:18.619Z Has data issue: false hasContentIssue false

Measuring the Ultrafast Spectral Diffusion Dynamics of Colloidal CdSe Nanomaterials

Published online by Cambridge University Press:  23 January 2019

Thanh Nhut Do
Affiliation:
Division of Chemistry and Biological Chemistry, School of Physical and Mathematical Sciences, Nanyang Technological University, 21 Nanyang Link, Singapore637371
Cheng Zhang
Affiliation:
Division of Chemistry and Biological Chemistry, School of Physical and Mathematical Sciences, Nanyang Technological University, 21 Nanyang Link, Singapore637371
Xuanwei Ong
Affiliation:
Department of Chemistry, National University of Singapore, 3 Science Drive 3, Singapore117543
Jie Lian
Affiliation:
Department of Chemistry, National University of Singapore, 3 Science Drive 3, Singapore117543
Yinthai Chan
Affiliation:
Department of Chemistry, National University of Singapore, 3 Science Drive 3, Singapore117543
Howe-Siang Tan*
Affiliation:
Division of Chemistry and Biological Chemistry, School of Physical and Mathematical Sciences, Nanyang Technological University, 21 Nanyang Link, Singapore637371
Get access

Abstract

We use ultrafast coherent two-dimensional electronic spectroscopy (2DES) to study the ultrafast spectral diffusion dynamics of colloidal CdSe quantum dots (QDs) and CdSe nanoplatelets (NPLs). The Center Line Slope (CLS) and Nodal Line Slope (NLS) techniques were employed to analyse the 2DES spectra. We show that no spectral diffusion dynamics occurs for the CdSe QDs. On the other hand, spectral diffusion was observed in the CdSe 5 mono-layers NPLs heavy-hole transition. The normalized Frequency Fluctuation Correlation Function (FFCF) of the CdSe NPLs heavy-hole transition was measured to have a major fast decay component at 140 fs.

Type
Articles
Copyright
Copyright © Materials Research Society 2019 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

References:

Cui, J., Beyler, A. P., Marshall, L. F., Chen, O., Harris, D. K., Wanger, D. D., Brokmann, X., and Bawendi, M. G., Nature Chem. 5, 602-606 (2013).CrossRefGoogle Scholar
Gammon, D., Snow, E. S., Shanabrook, B. V., Katzer, D. S. and Park, D., Science 273, 87-90 (1996).CrossRefGoogle Scholar
Kubo, R., Adv. Chem. Phys. 15, 101-127 (1969).Google Scholar
Kambhampati, P., J. Phys. Chem. C 115, 22089-22109 (2011).CrossRefGoogle Scholar
Wu, K., Li, Q., Du, Y., Chen, Z., and Lian, T., Chem. Sci. 6, 1049-1054 (2015).CrossRefGoogle Scholar
Kramer, P. L., Nishida, J., Giammanco, C. H., Tamimi, A., and Fayer, M. D., J. Chem. Phys. 142, 184505 (2015).CrossRefGoogle Scholar
Perakis, F., Marco, L. D., Shalit, A., Tang, F., Kann, Z. R., Kühne, T. D., Torre, R., Bonn, M., and Nagata, Y., Chem. Rev. 116, 7590-7607 (2016).CrossRefGoogle Scholar
Nowakowski, P. J., Faisal Khyasudeen, M., and Tan, H.-S., Chem. Phys. doi.org/10.1016/j.chemphys.2018.06.015Google Scholar
Hamm, P., and Zanni, M., Concepts and Methods of 2D Infrared Spectroscopy, (Cambridge University Press, New York, 2011).CrossRefGoogle Scholar
Garrett-Roe, S., and Hamm, P., J. Chem. Phys. 128, 104507 (2008).CrossRefGoogle Scholar
Gellen, T. A., Lem, J., and Turner, D. B., Nano Lett . 17, 2809-2815 (2017).CrossRefGoogle Scholar
Kwak, K., Park, S., Finkelstein, I. J., and Fayer, M. D., J. Chem. Phys. 127, 124503 (2007).CrossRefGoogle Scholar
Kwak, K., Rosenfeld, D. E., and Fayer, M. D., J. Chem. Phys. 128, 204505 (2008).CrossRefGoogle Scholar
Roberts, S. T., Loparo, J. J., and Tokmakoff, A., J. Chem. Phys. 125, 084502 (2006).CrossRefGoogle Scholar
Loparo, J. J., Roberts, S. T., and Tokmakoff, A., J. Chem. Phys. 125, 194522 (2006).CrossRefGoogle Scholar
Finkelstein, I. J., Zheng, J., Ishikawa, H., Kim, S., Kwak, K., and Fayer, M. D., Phys. Chem. Chem. Phys. 9, 1533-1549 (2007).CrossRefGoogle Scholar
Kwac, K., and Cho, M., J. Chem. Phys. 119, 2256-2263 (2003).CrossRefGoogle Scholar
Chkrabortty, S., Xing, G., Xu, Y., Ngiam, S. W., Mishra, N., Sum, T. C., Chan, Y., Small 7, 2847-2852 (2011).CrossRefGoogle Scholar
Guzelturk, B., Olutas, M., Delikanli, S., Kelestemur, Y., Erdem, O., and Demir, H. V., Nanoscale 7, 2545-2551 (2015).CrossRefGoogle Scholar
Zhang, Z., Wells, K. L., Hyland, E. W. J., and Tan, H.-S., Chem. Phys. Lett. 550, 156-161 (2012).CrossRefGoogle Scholar
Zhang, C., Do, T. N., Ong, X., Chan, Y., and Tan, H.-S., (submitted).Google Scholar
Zhang, C., Do, T. N., Ong, X., Chan, Y., and Tan, H.-S., Chem. Phys. 481, 157-164 (2016).CrossRefGoogle Scholar
Klimov, V. I., Ann. Rev. Phys. Chem. 58, 635-673 (2007).CrossRefGoogle Scholar
Gelllen, T. A., Lem, J., and Turner, D. B., Nano Lett . 17, 2809-2815 (2017).CrossRefGoogle Scholar
Wells, K. L., Zhang, Z., Rouxel, J. R., Tan, H.-S., J. Phys. Chem. B 117, 2294-2299 (2013).CrossRefGoogle Scholar