Hostname: page-component-848d4c4894-p2v8j Total loading time: 0.001 Render date: 2024-05-28T20:36:54.403Z Has data issue: false hasContentIssue false

Inkjet Printed Spiral Stretchable Electronics Using Reactive Ink Chemistries

Published online by Cambridge University Press:  14 June 2016

Avinash Mamidanna*
Affiliation:
Arizona State University, Tempe, Arizona, United States
Zeming Song
Affiliation:
Arizona State University, Tempe, Arizona, United States
Cheng Lv
Affiliation:
Arizona State University, Tempe, Arizona, United States
Christopher S. Lefky
Affiliation:
Arizona State University, Tempe, Arizona, United States
Hanqing Jiang
Affiliation:
Arizona State University, Tempe, Arizona, United States
Owen Hildreth
Affiliation:
Arizona State University, Tempe, Arizona, United States
*
*(Email: amamidan@asu.edu)
Get access

Abstract

Fabrication methods and performance characteristics of spiral stretchable interconnects fabricated using drop-on-demand printing of silver reactive inks are discussed. This work details ink optimization, device fabrication, and device characterization while demonstrating the potential applications for reactive inks and new design strategies in stretchable electronics. Devices were printed with an ethanol stabilized silver diamine reactive ink and cycled to 160 % over 100 cycles with less than 10% increase in electrical resistance. Maximum deformation before failure was measured at 180% elongation. A novel method for fabrication of a stretchable electronics device has been studied and verified.

Type
Articles
Copyright
Copyright © Materials Research Society 2016 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Reuss, R.H., Chalamala, B.R., Moussessian, B.R., Kane, A., Kumar, M.G., Zhang, A., Rogers, D.C., Hatalis, J.A., Temple, M., Moddel, D., Eliasson, G., Estes, B.J., Kunze, M.J., Handy, J., Harmon, E.S., Salzman, E.S., Woodall, D.B., Alam, J.M., Murthy, M.A., Jacobsen, J.Y., Olivier, S.C., Markus, M., Campbell, D., Snow, P.M., and , E, in Proceedings of the IEEE (2005), pp. 12391256.Google Scholar
Kim, T.I., McCall, J.G., Jung, Y.H., Huang, X., Siuda, E.R., Li, Y., Song, J., Song, Y.M., Pao, H.A., Kim, R.H., Lu, C., Lee, S.D., Song, I.S., Shin, G., Al-Hasani, R., Kim, S., Tan, M.P., Huang, Y., Omenetto, F.G., Rogers, J.A., and Bruchas, M.R., Science 340, 211 (2013).Google Scholar
Kim, T.I., McCall, J.G., Jung, Y.H., Huang, X., Siuda, E.R., Li, Y., Song, J., Song, Y.M., Pao, H.A., Kim, R.H., Lu, C., Lee, S.D., Song, I.S., Shin, G., Al-Hasani, R., Kim, S., Tan, M.P., Huang, Y., Omenetto, F.G., Rogers, J.A., and Bruchas, M.R., Science 340, 211 (2013).CrossRefGoogle Scholar
Webb, R.C., Bonifas, A.P., Behnaz, A., Zhang, Y., Yu, K.J., Cheng, H., Shi, M., Bian, Z., Liu, Z., Kim, Y.-S., Yeo, W.-H., Park, J.S., Song, J., Li, Y., Huang, Y., Gorbach, A.M., and Rogers, J.A., Nat Mater 12, 938 (2013).CrossRefGoogle Scholar
Lv, C., Yu, H., and Jiang, H., Extreme Mechanics Letters 1 IS -, 29 (2014).Google Scholar
Yu, C., Wang, Z., Yu, H., and Jiang, H., Applied Physics Letters 95, 1419121 1 (2009).Google Scholar
Gazotti, W.A., Casalbore Miceli, G., Geri, A., Berlin, A., and de Paoli, M.A., Advanced Materials 10, 1522 (1998).Google Scholar
Walker, S.B. and Lewis, J.A., Journal of the American Chemical Society 134, 1419 (2012).CrossRefGoogle Scholar
Lee, H.M., Lee, H.B., Jung, D.S., Yun, J.-Y., Ko, S.H., and Park, S.B., Langmuir 28, 13127 (2012).CrossRefGoogle Scholar
Farraj, Y., Grouchko, M., and Magdassi, S., Chem Commun 51, 1587 (2015).CrossRefGoogle Scholar
Materials Handbook (Springer Science & Business Media, 2008).Google Scholar