Hostname: page-component-848d4c4894-cjp7w Total loading time: 0 Render date: 2024-06-20T02:06:41.786Z Has data issue: false hasContentIssue false

InGaAsP variable optical attenuator with lateral P-I-N junction formed by Ni-InGaAsP and Zn diffusion on III-V on insulator wafer

Published online by Cambridge University Press:  10 May 2016

Jin-Kwon Park*
Affiliation:
Department of Electrical Engineering and Information systems, The University of Tokyo 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan JST-CREST
Jae-Hoon Han
Affiliation:
Department of Electrical Engineering and Information systems, The University of Tokyo 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan JST-CREST
Mitsuru Takenaka
Affiliation:
Department of Electrical Engineering and Information systems, The University of Tokyo 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan JST-CREST
Shinichi Takagi
Affiliation:
Department of Electrical Engineering and Information systems, The University of Tokyo 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan JST-CREST
Get access

Abstract

In this study, we successfully demonstrate a carrier-injection InGaAsP variable optical attenuator (VOA) with a lateral P-I-N junction formed by Ni-InGaAsP alloy and Zn diffusion on a III-V on insulator (III-V-OI) wafer. The Ni-InGaAsP alloy for the n+ junction is formed by direct reaction between Ni and InGaAsP after annealing at 350°C. The p+ junction is formed by the Zn diffusion at 500°C using Zn doped spin-on glass (SOG). By both techniques, we successfully reduce the sheet and contact resistivity in the lateral P-I-N junction even with the relatively low-temperature process as compared with the P-I-N junction formed by conventional Si and Be ion implantation. By injecting carriers into the InGaAsP waveguide through the lateral P-I-N junction, we achieve the optical attenuation of -40 dB/mm with an injection current density of 40 mA/mm at a 1.55 μm wavelength.

Type
Articles
Copyright
Copyright © Materials Research Society 2016 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Nagarajan, R., Kato, M., Pleumeekers, J., Evans, P., Lambert, D., Chen, A., Dominic, V., Mathur, A., Cchavarkar, P., Missey, M., Dentai, A., Hurtt, S., Back, J., Muthiah, R., Murthy, S., Salvatore, R., Grubb, S., Joyner, C., Rossi, J., Schneider, R., Ziari, M., Kish, F., Welch, D., Electron. Lett. 42, 771 (2006)Google Scholar
Nagarajan, R., Rahn, J., Kato, M., Pleumeekers, J., Lambert, D., Lal, V., Tsai, H.-S., Nilsson, A., Dentai, A., Kuntz, M., Malendevich, R., Tang, J., Zhang, J., Butrie, T., Raburn, M., Little, B., Chen, W., Goldfarb, G., Dominic, V., Taylor, B., Reffle, M., Kish, F., and Welch, D., J. Lightwave Technol. 29, 386 (2011)CrossRefGoogle Scholar
Michael, B., Koren, R., Muller, U., Young, B. I., Chien, G., Raybon, M., , G., IEEE Photonics Technol. Lett. 6, 1412 (1994)CrossRefGoogle Scholar
Takenaka, M., and Nakano, Y., Opt. Express 15, 8422 (2007)Google Scholar
Takenaka, M., Yokoyama, M., Sugiyama, M., Nakano, Y., and Takagi, S., Proc. Optical Fiber Communication Conference, 2010 OThS5Google Scholar
Green, William M. J., Rooks, Michal J., Sekaric, Lidija, and Vlkasov, Yurii A., Opt. Express 15, 17107 (2007)Google Scholar
Liao, L. Liu, A., Rubin, D., Basak, J., Chetrit, Y., Nguyen, H., Cohen, R., Izhaky, N., and Paniccia, M., Electron. Lett. 43, 51 (2009)Google Scholar
Xu, Q., Schmidt, B., Pradhan, S., and Lipson, M., Nature 435, 325 (2005)Google Scholar
Takenaka, M., Yokoyama, M., Sugiyama, M., Nakano, Y., and Takagi, S., Appl. Phys. Express 6, 042501, (2013)CrossRefGoogle Scholar
Lee, J., Maeda, Y., Atsumi, Y., Takino, Y., Nishiyama, N., and Arai, S., Jpn. J. Appl. Phys. 51, 042201, (2012).Google Scholar
Cheng, Y., Ikku, Y., Takenaka, M., and Takagi, S., Jpn. J. Appl. Phys. 55, 04EH01, (2016).CrossRefGoogle Scholar
Ikku, Y., Yokoyama, M., Ichikawa, O., Hata, M., Takenaka, M., and Takagi, S., Opt. Express 20, B357, (2012)Google Scholar
Matsuo, S., Fujii, T., Hasebe, K., Takeda, K., Sato, T., and Kakitsuka, T., Opt. Express. 22, 12139, (2014)Google Scholar
Liang, D., Fang, A. W., Oakley, D. C., Napoleone, A., Chapman, D. C., Chen, C.-L., Juodawlkis, P. W., Raday, O., and Bowers, J. E., Proceedings of 214th Electrochemical Society Meeting, paper 2220, Honolulu, USA (2008).CrossRefGoogle Scholar
Han, J. H., Takenaka, M. and Takagi, S., Jpn. J. Appl. Phys. 55, 04EC06 (2016)Google Scholar
Liang, D. and Bowers, J. E., J. Vac. Sci.&Technol. 26, 1560 (2008)Google Scholar
Park, J. K., Takenaka, M. and Takagi, S., Jpn. J. Appl. Phys. 55, 04EH04 (2016)Google Scholar
Kim, Y.H., Fujikata, J., Takahashi, S., Takenaka, M. and Takagi, S., Opt. Express 23, 12354 (2015)Google Scholar
Bennet, B. R., Soref, R. A. and Del Alamo, J. A., IEEE J. of Quantum Electron. 26, 113 (1990)Google Scholar
Reid, B., Maciejko, R. and Champagne, A., Can. J. Phys. 71, 410 (1993)CrossRefGoogle Scholar