Hostname: page-component-848d4c4894-nmvwc Total loading time: 0 Render date: 2024-06-18T05:22:48.215Z Has data issue: false hasContentIssue false

Influence of 4-vinylbenzylation on the rheological and swelling properties of photo-activated collagen hydrogels

Published online by Cambridge University Press:  11 December 2015

Giuseppe Tronci*
Affiliation:
Nonwovens Research Group, Centre for Technical Textiles, School of Design, University of Leeds, Leeds LS2 9JT, United Kingdom School of Dentistry, St. James’s University Hospital, University of Leeds, Leeds LS9 7TF, United Kingdom
Colin A. Grant
Affiliation:
Advanced Materials Engineering, Polymer IRC Labs, Faculty of Engineering & Informatics, University of Bradford, Bradford BD7 1DP, United Kingdom
Neil H. Thomson
Affiliation:
School of Dentistry, St. James’s University Hospital, University of Leeds, Leeds LS9 7TF, United Kingdom Molecular and Nanoscale Physics, School of Physics and Astronomy, University of Leeds, Leeds LS2 9JT, United Kingdom
Stephen J. Russell
Affiliation:
Nonwovens Research Group, Centre for Technical Textiles, School of Design, University of Leeds, Leeds LS2 9JT, United Kingdom
David J. Wood
Affiliation:
School of Dentistry, St. James’s University Hospital, University of Leeds, Leeds LS9 7TF, United Kingdom
Get access

Abstract

Covalent functionalisation of collagen has been shown to be a promising strategy to adjust the mechanical properties of highly swollen collagen hydrogels. At the same time, secondary interactions between for example, amino acidic terminations or introduced functional groups also play an important role and are often challenging to predict and control. To explore this challenge, 4-vinylbenzyl chloride (4VBC) and methacrylic anhydride (MA) were reacted with type I collagen, and the swelling and rheological properties of resulting photo-activated hydrogel systems investigated. 4VBC-based hydrogels showed significantly increased swelling ratio, in light of the lower degree of collagen functionalisation, with respect to methacrylated collagen networks, whilst rheological storage moduli were found to be comparable between the two systems. To explore the role of benzyl groups in the mechanical properties of the 4VBC-based collagen system, model chemical force microscopy (CFM) was carried out in aqueous environment with an aromatised probe against an aromatised gold-coated glass slide. A marked increase in adhesion force (F: 0.11±0.01 nN) was measured between aromatised samples, compared to the adhesion force observed between the non-modified probe and a glass substrate (F: 2.64±1.82 nN). These results suggest the formation of additional and reversible π-π stacking interactions in aromatic 4VBC-based networks and explain the remarkable rheological properties of this system in comparison to MA-based hydrogels.

Type
Articles
Copyright
Copyright © Materials Research Society 2015 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Zhou, T., Wang, N., Xue, Y., Ding, T., Liu, X., Mo, X., Sun, J., ACS Appl. Mater. Interf. 7, 32533262 (2015).CrossRefGoogle Scholar
Helary, C., Abed, A., Mosser, G., Louedec, L., Letourneur, D., Coradin, T., Giraud-Guille, M.M., Meddahi-Pellé, A., Biomater. Sci. 3, 373 (2015).CrossRefGoogle Scholar
Sargeant, T.D., Desai, A.P., Banerjee, S., Agawu, A., Stopek, J.B., Acta Biomaterialia 8, 124 (2012).CrossRefGoogle Scholar
Cheng-Hung, C., Yong-Guei, C., Chien-Chen, L., Shang-Ming, L., Kai-Chiang, Y., Shih-Hsin, C., Tissue Eng. Part A, 20, 2493 (2014).Google Scholar
Qiao, X., Russell, S.J., Yang, X., Tronci, G., Wood, D.J., J. Funct. Biomater. 6, 667686 (2015).CrossRefGoogle Scholar
Tronci, G., Grant, C.A., Thomson, N.H., Russell, S.J., Wood, D.J., J. R. Soc. Interface 12, 20141079 (2015).CrossRefGoogle Scholar
Tronci, G., Russell, S.J., Wood, D.J., J. Mater. Chem. B 1, 37053715 (2013).CrossRefGoogle Scholar
Bubnis, W.A., Ofner, C.M., Analyt. Biochem. 207, 129 (1992).CrossRefGoogle Scholar
Hutter, J.L., Bechhoefer, J., Rev. Sci. Instrum. 64, 1868 (1993).CrossRefGoogle Scholar
Noy, A., Daniel Frisbie, C., Rozsnyai, L.F., Wrighton, M.S., Lieber, C.M., J. Am. Chem. Soc. 117, 7943 (1995).CrossRefGoogle Scholar
El-Fiqi, A., Lee, J.H., Lee, E.-J., Kim, H.-W., Acta Biomaterialia 9, 9508 (2013).CrossRefGoogle Scholar
Ding, Y., Li, Y., Qin, M., Cao, Y., Wang, W., Langmuir 29, 13299 (2013).CrossRefGoogle Scholar
Paciello, A., Santonicola, M.G., RSC Adv. 5, 88866 (2015).CrossRefGoogle Scholar
Perutz, M.F., Phil. Trans. R. Soc. A 345, 105 (1993).Google Scholar
Tronci, G., Neffe, A.T., Pierce, B.F., Lendlein, A., J. Mater. Chem. 20, 8875 (2010).CrossRefGoogle Scholar
Barattin, R., Voyer, N., Chem. Commun. 1513 (2008), DOI: 10.1039/B614328H.CrossRefGoogle Scholar