Hostname: page-component-76fb5796d-45l2p Total loading time: 0 Render date: 2024-04-25T14:48:14.368Z Has data issue: false hasContentIssue false

Incorporation of Mg into thick free-standing HVPE GaN

Published online by Cambridge University Press:  04 February 2016

M.E. Zvanut*
Affiliation:
Physics Department, University of Alabama at Birmingham, AL 35294, USA
J. Dashdorj
Affiliation:
Physics Department, University of Alabama at Birmingham, AL 35294, USA
J.A. Freitas Jr.
Affiliation:
Naval Research Laboratory, Washington, DC 20375, USA
E.R. Glaser
Affiliation:
Naval Research Laboratory, Washington, DC 20375, USA
J.H. Leach
Affiliation:
Kyma Technologies Inc., Raleigh, NC 27617, USA
K. Udwary
Affiliation:
Kyma Technologies Inc., Raleigh, NC 27617, USA
*
Get access

Abstract

Mg, the only effective p-type dopant for nitrides, is well-studied in thin films due to the important role the impurity plays in light emitting diodes and high power electronics. However, there are few reports of Mg in thick free-standing GaN substrates. Here we evaluate the material quality and point defects in GaN grown by hydride vapor phase epitaxy (HVPE) using metallic Mg as the doping source. The crystal quality is typical of commercially grown HVPE substrates, and the photoluminescence measurements reveal distinctively sharp excitonic and shallow-donor shallow-acceptor features. Secondary ion mass spectroscopy indicates total Mg concentrations between 7x1016 and 6x1018 cm-3 in the four separate samples studied but, more significantly, photoluminescence and electron paramagnetic resonance spectroscopy show that the Mg is incorporated as a shallow acceptor.

Keywords

Type
Articles
Copyright
Copyright © Materials Research Society 2016 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Morkoc, H., “Handbook of Nitride Materials and Devices”, Wiley, 2008.CrossRefGoogle Scholar
Paskova, T., Hanser, D.A., and Evans, K.R., Proc. IEEE 98, 1324 (2010).CrossRefGoogle Scholar
Mahadik, N.A., Qadri, S.B., and Freitas, J.A. Jr, Cryst. Growth Des. 15, 291 (2015).CrossRefGoogle Scholar
Cich, M.J., Aldaz, R.I., Chakraborty, A., David, A., Grundmann, M.J., Tyagi, A., Zhang, M., Steranka, F.M., and Krames, M.R., Appl. Phys. Lett. 101, 223509 (2012).CrossRefGoogle Scholar
Kizilyalli, I.C., Edwards, A., Aktas, O., Prunty, T., and Bour, D., IEEE Trans. Elec. Dev. 62, 414 (2015).CrossRefGoogle Scholar
Kruszewski, P., Prystawko, P., Kasalynas, I., Nowakowska-Siwinska, A., Krysko, M., Plesiewicz, J., Smalc-Koziorowska, J., Dwilinski, R., Zajac, M., Kucharski, R., and Leszczynski, M., Semicond. Sci. Technol. 29, 075004–1 (2014).CrossRefGoogle Scholar
Bockowski, M., Lucznik, B., Sochacki, T., Amilusik, M., Litwin-Staszewska, E., Piotrzkowski, R., and Grzegory, I., Proc. SPIE 8625, 862509–1 (2013).Google Scholar
Usikov, A., Kovalenkov, O., Soukhoveev, V., Ivantsov, V., Syrkin, A., Dmitriev, V., Nikiforov, A.Y., Sundaresan, S.G., Jeliaszkov, S.J., and Davydov, A.V., Phys. Status. Solidi C 5, 1829 (2008).CrossRefGoogle Scholar
Glaser, E.R., Murthy, M., Freitas, J.A. Jr, Storm, D.F., Zhou, L., and Smith, D.J., Physica B 401-402, 327 (2007).CrossRefGoogle Scholar
Patel, J.L., Nicholls, J.E., and Davies, J.J., J. Phys. C: Solid State Phys. 14, 1339 (1981).CrossRefGoogle Scholar
Weil, J.A., Bolton, J.R., and Wertz, J.E., "Electron Paramagnetic Resonance", John Wiley & Sons, Inc, N.Y., 1994.Google Scholar
Freitas, J.A. Jr, Mastro, M.A., Glaser, E.R., Garces, N.Y., Lee, S.K., Chung, J.H., Oh, D.K., and Shim, K.B., J. Cryst. Growth 350, 27 (2012).Google Scholar
Kirste, R., Hoffmann, M., Tweedie, J., Bryan, Z., Callsen, G., Kure, T., Nenstiel, C., Wagner, M., Collazo, R., Hoffmann, A., and Sitar, Z., J. Appl. Phys. 113, 103504 (2013).CrossRefGoogle Scholar
Haboeck, U., Siegle, H., Hoffmann, A., and Thomsen, C., Phys. Stat. Solidi C 0, 1710 (2003).CrossRefGoogle Scholar
Zvanut, M.E., Dashdorj, J., Willoughby, W.R., Sunay, U.R., Leach, J.H., and Udwary, K., J. Appl. Phys. submitted, 2015.Google Scholar
Monemar, B., Paskov, P.P., Pozina, G., Hemmingsson, C., Bergman, J.P., Kawashima, T., Amano, H., Akasaki, I., Paskova, T., Figge, S., Hommel, D., and Usui, A., Phys. Rev. Lett. 102, 235501 (2009).Google Scholar
Freitas, J.A. Jr, Feigelson, B.N, and Anderson, T.J., Appl. Phys. Express 6, 111001 (2013).Google Scholar
Glaser, E.R., Freitas, J.A. Jr, Shanabrook, B.V., and Koleske, D.D., Phys. Rev. B 68, 195201 (2003).Google Scholar
Matlock, D.M., Zvanut, M.E., Wang, H., Dimaio, J.R., Davis, R.F., Van Nostrand, J.E., Henry, R.L., Koleske, D., and Wickenden, A., J. Electron. Mater. 34, 34 (2005).CrossRefGoogle Scholar