Hostname: page-component-8448b6f56d-jr42d Total loading time: 0 Render date: 2024-04-24T16:20:55.848Z Has data issue: false hasContentIssue false

Identification of Defect Levels in Copper Indium Diselenide (CuInSe2) Thin Films via Photoluminescence Studies

Published online by Cambridge University Press:  06 August 2018

Niraj Shrestha*
Affiliation:
Department of Physics and Astronomy, Wright Center for Photovoltaics Innovation and Commercialization, University of Toledo, Toledo, OH, USA43606
Dhurba R. Sapkota
Affiliation:
Department of Physics and Astronomy, Wright Center for Photovoltaics Innovation and Commercialization, University of Toledo, Toledo, OH, USA43606
Kamala K. Subedi
Affiliation:
Department of Physics and Astronomy, Wright Center for Photovoltaics Innovation and Commercialization, University of Toledo, Toledo, OH, USA43606
Puja Pradhan
Affiliation:
Department of Physics and Astronomy, Wright Center for Photovoltaics Innovation and Commercialization, University of Toledo, Toledo, OH, USA43606
Prakash Koirala
Affiliation:
Department of Physics and Astronomy, Wright Center for Photovoltaics Innovation and Commercialization, University of Toledo, Toledo, OH, USA43606
Adam B. Phillips
Affiliation:
Department of Physics and Astronomy, Wright Center for Photovoltaics Innovation and Commercialization, University of Toledo, Toledo, OH, USA43606
Robert W. Collins
Affiliation:
Department of Physics and Astronomy, Wright Center for Photovoltaics Innovation and Commercialization, University of Toledo, Toledo, OH, USA43606
Michael J. Heben
Affiliation:
Department of Physics and Astronomy, Wright Center for Photovoltaics Innovation and Commercialization, University of Toledo, Toledo, OH, USA43606
Randy J. Ellingson
Affiliation:
Department of Physics and Astronomy, Wright Center for Photovoltaics Innovation and Commercialization, University of Toledo, Toledo, OH, USA43606
Get access

Abstract

Photoluminescence (PL) spectroscopy has been used to study the defect levels in thin film copper indium diselenide (CuInSe2, CIS) which we are developing as the absorber layer for the bottom cell of a monolithically grown perovskite/CuInSe2 tandem solar cell. Temperature and laser power dependent PL measurements of thin film CIS for two different Cu/In ratios (0.66 and 0.80) have been performed. The CIS film with Cu/In = 0.80 shows a prominent donor-to-acceptor peak (DAP) involving a shallow acceptor of binding energy ∼22 meV, with phonon replica at ∼32 meV spacing. In contrast, PL measurement of CIS film for Cu/In = 0.66 taken at 20 K exhibited an asymmetric and broad PL spectrum with peaks at 0.845 eV and 0.787 eV. Laser intensity dependent PL revealed that the observed peaks 0.845 eV and 0.787 eV shift towards higher energy (aka j-shift) at ∼11.7 meV/decade and ∼ 8 meV/decade with increase in laser intensity respectively. The asymmetric and broad spectrum together with large j-shift suggests that the observed peaks at 0.845 eV and 0.787 eV were related to band-to-tail (BT) and band-to-impurity (BI) transition, respectively. Such a band-tail-related transition originates from the potential fluctuation of defect states at low temperature. The appearance of band related transition in CIS film with Cu/In = 0.66 is the indicator of the presence of large number of charged defect states.

Type
Articles
Copyright
Copyright © Materials Research Society 2018 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Shigeru, N., Yunosuke, M., Akimasa, Y., Akira, O., Syunji, M., Osamu, I., Kazuhiro, A. and Noboru, K., Jpn. J. Appl. Phys. 33 (4A), L500 (1994).Google Scholar
Green, M. A., Emery, K., Hishikawa, Y., Warta, W. and Dunlop, E. D., Prog. Photovoltaics 23(1), 19 (2015).CrossRefGoogle Scholar
Yüksel, Ö. F., Basol, B. M., Safak, H. and Karabiyik, H., Appl. Phys. A 73(3), 387389 (2001).CrossRefGoogle Scholar
Wagner, M., Dirnstorfer, I., Hofmann, D. M., Lampert, M. D., Karg, F. and Meyer, B. K., Phys. Status Solidi A 167(1), 131142 (1998).3.0.CO;2-F>CrossRefGoogle Scholar
Turcu, M., Pakma, O. and Rau, U., Appl. Phys. Lett. 80(14), 25982600 (2002).CrossRefGoogle Scholar
Deprédurand, V., Tanaka, D., Aida, Y., Carlberg, M., Fèvre, N. and Siebentritt, S., Journal of Applied Physics 115(4), 044503 (2014).CrossRefGoogle Scholar
Siebentritt, S., Gütay, L., Regesch, D., Aida, Y. and Deprédurand, V., Solar Energy Materials and Solar Cells 119, 1825 (2013).CrossRefGoogle Scholar
Yakushev, M. V., Krustok, J., Grossberg, M., Volkov, V. A., Mudryi, A. V. and Martin, R. W., J. Phys. D: Appl. Phys. 49(10), 105108 (2016).CrossRefGoogle Scholar
Krustok, J., Collan, H., Yakushev, M. and Hjelt, K., Phys. Scr. 1999 (T79), 179 (1999).CrossRefGoogle Scholar
Levanyuk, A. P. and Osipov, V. V., Phys.-Usp. 24(3), 187 (1981).Google Scholar
Dagan, G., Abou-Elfotouh, F., Dunlavy, D. J., Matson, R. J. and Cahen, D., Chem. Mater. 2(3), 286293 (1990).CrossRefGoogle Scholar
Susanne Siebentritt, U. R., Wide-Gap Chalcopyrites, 1 ed. (Springer-Verlag Berlin Heidelberg, 2006).CrossRefGoogle Scholar
Yu, P. W., Journal of Applied Physics 48(12), 50435051 (1977).CrossRefGoogle Scholar
Krustok, J., Jagomägi, A., Grossberg, M., Raudoja, J. and Danilson, M., Solar Energy Materials and Solar Cells 90(13), 19731982 (2006).CrossRefGoogle Scholar
Somphong, C., Kajornyod, Y., Pong, S., Chanwit, C., Khampheuy, S., Somrit, W. and Per Olof, H., Jpn. J. Appl. Phys. 37 (3A), L269 (1998).Google Scholar
Kodigala, S. R., Cu(In1-xGax)Se2 Based Thin Film Solar Cells, 1 ed. (Elsevier Science, 2011).Google Scholar
Krustok, J., Valdna, V., Hjelt, K. and Collan, H., J. Appl. Phys. 80(3), 17571762 (1996).CrossRefGoogle Scholar
Schmidt, T., Daniel, G. and Lischka, K., J. Cryst. Growth 117(1), 748752 (1992).CrossRefGoogle Scholar
Niki, S., Makita, Y., Yamada, A., Hellman, O., Fons, P. J., Obara, A., Okada, Y., Shioda, R., Oyanagi, H., Kurafuji, T., Chichibu, S. and Nakanishi, H., J. Cryst. Growth 150, 12011205 (1995).CrossRefGoogle Scholar
Yadav, S., Rodríguez-Fernández, C., CantareroM. M. d. L. Jr., A. M. M. d. L. Jr., A. and Dhar, S., Journal of Applied Physics 118(22), 225703 (2015).CrossRefGoogle Scholar
Krustok, J., Jagomägi, A., Raudoja, J. and Altosaar, M., Sol. Energy Mater. Sol. Cells 79(3), 401408 (2003).CrossRefGoogle Scholar
Krustok, J., Collan, H. and Hjelt, K., J. Appl. Phys. 81(3), 14421445 (1997).CrossRefGoogle Scholar
Wasim, S. M., Sol. Cells 16, 289316 (1986).CrossRefGoogle Scholar
Taizo, I., Saburo, E. and Shigeo, K., Jpn. J. Appl. Phys. 18(7), 1303 (1979).Google Scholar
Neumann, H., Nowak, E. and Kühn, G., Krist. Tech. 16(12), 13691376 (1981).CrossRefGoogle Scholar