Hostname: page-component-8448b6f56d-xtgtn Total loading time: 0 Render date: 2024-04-23T19:42:45.568Z Has data issue: false hasContentIssue false

Functionalized Polythiophene Copolymers for Electronic Biomedical Devices

Published online by Cambridge University Press:  09 January 2020

Samadhan Nagane
Affiliation:
Department of Materials Science and Engineering, The University of Delaware, Newark, DE 19716
Peter Sitarik
Affiliation:
Department of Materials Science and Engineering, The University of Delaware, Newark, DE 19716
Yuhang Wu
Affiliation:
Department of Materials Science and Engineering, The University of Delaware, Newark, DE 19716
Quintin Baugh
Affiliation:
Department of Materials Science and Engineering, The University of Delaware, Newark, DE 19716
Shrirang Chhatre
Affiliation:
Department of Materials Science and Engineering, The University of Delaware, Newark, DE 19716
Junghyun Lee
Affiliation:
Department of Materials Science and Engineering, The University of Delaware, Newark, DE 19716
David C. Martin*
Affiliation:
Department of Materials Science and Engineering, The University of Delaware, Newark, DE 19716
*
*(Email: milty@udel.edu)
Get access

Abstract

We continue to investigate the design, synthesis, and characterization of electrically and ionically active conjugated polythiophene copolymers for integrating a variety of biomedical devices with living tissue. This paper will describe some of our most recent results, including the development of several new monomers that can tailor the surface chemistry, adhesion, and biointegration of these materials with neural cells. Our efforts have focused on copolymers of 3,4 ethylenedioxythiophene (EDOT), functionalized variants of EDOT (including EDOT-acid and the trifunctional EPh), and dopamine (DOPA). The resulting PEDOT-based copolymers have electrical, optical, mechanical, and adhesive properties that can be precisely tailored by fine tuning the chemical composition and structure. Here we present results on EDOT-dopamine bifunctional monomers and their corresponding polymers. We discuss the design and synthesis of an EDOT-cholesterol that combines the thiophene with a biological moiety known to exhibit surface-active behaviour. We will also introduce EDOT-aldehyde and EDOT-maleimide monomers and show how they can be used as the starting point for a wide variety of functionalized monomers and polymers.

Type
Articles
Copyright
Copyright © Materials Research Society 2020

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

References:

Martin, D. C., Molecular Design, Synthesis, and Characterization of Conjugated Polymers for Interfacing Electronic Biomedical Devices with Living Tissue. MRS Communications, 5 (2015) 131153.CrossRefGoogle Scholar
Mantione, D., Del Agua, I., Sanchez-Sanchez, A., & Mecerreyes, D., Poly(3,4-ethylenedioxythiophene) (PEDOT) Derivatives: Innovative Conductive Polymers for Bioelectronics. Polymers, 9 (2017) 354. https://doi.org/10.3390/polym9080354.CrossRefGoogle ScholarPubMed
Cui, X., Lee, V. A., Raphael, Y., Wiler, J. A., Hetke, J. F., Anderson, D. J., & Martin, D. C., Surface modification of neural recording electrodes with conducting polymer/biomolecule blends. Journal of Biomedical Materials Research, 56 (2001) 261272.10.1002/1097-4636(200108)56:2<261::AID-JBM1094>3.0.CO;2-I3.0.CO;2-I>CrossRefGoogle ScholarPubMed
Cui, X. & Martin, D. C., Electrochemical Deposition and Characterization of Poly(3,4-ethylenedioxythiophene) on Neural Microelectrode Arrays. Sensors and Actuators B: Chemical, 89 (2003) 92102.10.1016/S0925-4005(02)00448-3CrossRefGoogle Scholar
Kozai, T. D. Y., Catt, K., Gugel, Z. V., Olafsson, V. T., Vazquez, A. L., & Cui, X. T., Mechanical failure modes of chronically implanted planer silicon-based neural probes for laminar recording. Biomaterials, 37 (2014) 2539.CrossRefGoogle Scholar
Bu, H.-B., Götz, G., Reinold, E., Vogt, A., Schmid, S., Blanco, R., Segura, J. L., & Bäuerle, P., “Click”-functionalization of conducting poly(3,4-ethylenedioxythiophene) (PEDOT). Chemical Communications, (2008) 13201322. https://doi.org/10.1039/B718077B.CrossRefGoogle Scholar
Feldman, K. & Martin, D. C., Functional Conducting Polymers via Thiol-ene Chemistry. Biosensors & Bioelectronics, 2 (2012) 305317.Google ScholarPubMed
Wei, B., Ouyang, L., Liu, J., & Martin, D. C., Post-polymerization functionalization of poly(3,4-propylenedioxythiophene) (PProDOT) via thiol–ene “click” chemistry. J. Mater. Chem. B, 3 (2015) 50285034. https://doi.org/10.1039/C4TB02033B.CrossRefGoogle ScholarPubMed
Povlich, L. K., Cho, J. C., Leach, M. K., Kim, J., Corey, J. M., & Martin, D. C., Synthesis, Copolymerization, and Peptide-Modification of Carboxylic Acid-Functionalized 3,4-ethylenedioxythiophene (EDOTacid) for Neural Electrode Interfaces. Biochimica et Biophysica Acta, 1830 (2012) 42884293.10.1016/j.bbagen.2012.10.017CrossRefGoogle ScholarPubMed
Bhagwat, N., Kiick, K. L., & Martin, D. C., Electrochemical deposition and characterization of carboxylic-acid functionalized PEDOT copolymers. Journal of Materials Research, 29 (2014) 28352844.CrossRefGoogle Scholar
Bhagwat, N., Murray, R. E., Shah, S. I., Kiick, K. L., & Martin, D. C., Biofunctionalization of PEDOT films with laminin-derived peptides. Acta Biomaterialia, (2016). https://doi.org/10.1016/j.actbio.2016.05.016.CrossRefGoogle ScholarPubMed
Wei, B., Liu, J., Ouyang, L., Kuo, C.-C., & Martin, D. C., Significant enhancement of PEDOT thin film adhesion to inorganic substrates with EDOT-acid. ACS Applied Materials \& Interfaces, 7 (2015) 1538815394.CrossRefGoogle ScholarPubMed
Kim, J., Kim, B., Anand, C., Mano, A., Zaidi, J. S. M., Ariga, K., You, J., Vinu, A., & Kim, E., A Single-Step Synthesis of Electroactive Mesoporous ProDOT-Silica Structures. Angewandte Chemie International Edition, 54 (2015) 84078410. https://doi.org/10.1002/anie.201502498.CrossRefGoogle ScholarPubMed
Hai, W., Goda, T., Takeuchi, H., Yamaoka, S., Horiguchi, Y., Matsumoto, A., & Miyahara, Y., Specific Recognition of Human Influenza Virus with PEDOT Bearing Sialic Acid-Terminated Trisaccharides. ACS Applied Materials & Interfaces, 9 (2017) 1416214170. https://doi.org/10.1021/acsami.7b02523.CrossRefGoogle ScholarPubMed
Nagane, S. S., Kuhire, S. S., Jadhav, U. A., Dhanmane, S. A., & Wadgaonkar, P. P., Design and Synthesis of Aromatic Polyesters Bearing Pendant Clickable Maleimide Groups. Journal of Polymer Science Part A: Polymer Chemistry, 57 (2019) 630640. https://doi.org/10.1002/pola.29303.CrossRefGoogle Scholar
Nagane, S. S., Kuhire, S. S., Mane, S. R., & Wadgaonkar, P. P., Partially bio-based aromatic poly(ether sulfone)s bearing pendant furyl groups: synthesis, characterization and thermo-reversible cross-linking with a bismaleimide. Polymer Chemistry, 10 (2019) 10891098. https://doi.org/10.1039/C8PY01477A.CrossRefGoogle Scholar
Maher, D. M., Nagane, S. S., Jadhav, U. A., Salunkhe, P. H., Tawade, B. V., & Wadgaonkar, P. P., A new cardo bisphenol monomer containing pendant azido group and the resulting aromatic polyesters. Journal of Polymer Science Part A: Polymer Chemistry, 57 (2019) 15161526. https://doi.org/10.1002/pola.29414.CrossRefGoogle Scholar
Dolci, E., Froidevaux, V., Joly-Duhamel, C., Auvergne, R., Boutevin, B., & Caillol, S., Maleimides As a Building Block for the Synthesis of High Performance Polymers. Polymer Reviews, 56 (2016) 512556. https://doi.org/10.1080/15583724.2015.1116094.CrossRefGoogle Scholar
Decker, C. & Bianchi, C., Photocrosslinking of a maleimide functionalized polymethacrylate. Polymer International, 52 (2003) 722732. https://doi.org/10.1002/pi.1119.CrossRefGoogle Scholar
Gaina, C., Gaina, V., & Ciobanu, C., Thermal and mechanical characterization of maleimide-functionalized copoly(urethane-urea)s. Journal of Applied Polymer Science, 113 (2009) 32453254. https://doi.org/10.1002/app.30092.CrossRefGoogle Scholar
Hai, W., Goda, T., Takeuchi, H., Yamaoka, S., Horiguchi, Y., Matsumoto, A., & Miyahara, Y., Specific Recognition of Human Influenza Virus with PEDOT Bearing Sialic Acid-Terminated Trisaccharides. ACS Applied Materials & Interfaces, 9 (2017) 1416214170. https://doi.org/10.1021/acsami.7b02523.CrossRefGoogle ScholarPubMed
Ouyang, L., Wei, B., Kuo, C., Pathak, S., Farrell, B., & Martin, D. C., Enhanced PEDOT adhesion on solid substrates with electrografted P(EDOT-NH 2 ). Science Advances, 3 (2017) e1600448. https://doi.org/10.1126/sciadv.1600448.CrossRefGoogle Scholar
Delafresnaye, L., Schmitt, C. W., Barner, L., & Barner‐Kowollik, C., A Photochemical Ligation System Enabling Solid‐Phase Chemiluminescence Read‐Out. Chemistry – A European Journal, 25 (2019) 1253812544. https://doi.org/10.1002/chem.201901858.CrossRefGoogle ScholarPubMed