Hostname: page-component-8448b6f56d-mp689 Total loading time: 0 Render date: 2024-04-20T00:21:26.469Z Has data issue: false hasContentIssue false

Few-layer graphene aqueous suspensions for polyurethane composite coatings

Published online by Cambridge University Press:  20 December 2016

Eunice Cunha*
Affiliation:
Instituto de Polímeros e Compósitos/i3N, Universidade do Minho, Campus de Azurém, 4808-533 Guimarães, Portugal
Fernando Duarte
Affiliation:
Instituto de Polímeros e Compósitos/i3N, Universidade do Minho, Campus de Azurém, 4808-533 Guimarães, Portugal
M. Fernanda Proença
Affiliation:
Centro de Química, Universidade do Minho, Campus de Gualtar, 4710-057 Braga, Portugal
M. Conceição Paiva
Affiliation:
Instituto de Polímeros e Compósitos/i3N, Universidade do Minho, Campus de Azurém, 4808-533 Guimarães, Portugal
Get access

Abstract

Graphite nanoplates (GnP) have recently attracted attention as an economically viable alternative for the development of functional and structural nanocomposites. The incorporation of GnP into waterborne polyurethane (WPU) with loadings from 0.1 to 10 wt.% was studied. The mechanical properties of the composite films were assessed by tensile testing showing an increase of the Young’s modulus up to 48%. The electrical conductivity increased by 9 orders of magnitude and the water vapor permeability of the composite films decreased 57% for composites containing 5.0 wt.% of GnP.

Type
Articles
Copyright
Copyright © Materials Research Society 2016 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Editorial, Carbon, 65, 1 (2013).Google Scholar
Li, B. and Zhong, W., J. Mater. Sci., 46, 5595 (2011).Google Scholar
Kalaitzidou, K., Fukushima, H. and Drzal, T., Materials, 3, 1089 (2010).Google Scholar
Greinke, R., Patent No, U. S.. 6 406 612 (18 June 2002).Google Scholar
Chattopadhyay, D. and Raju, K., Progress in Polymer Science, 32, 352 (2007).CrossRefGoogle Scholar
Lomax, G., J. Mater. Chem., 17, 2775 (2007).Google Scholar
Zhao, W., Li, M. and Peng, H., Macromol. Mater. Eng., 295, 838 (2010).Google Scholar
Crawford, D. and Escarsega, J., Thermochimica Acta, 357, 161 (2000).CrossRefGoogle Scholar
Noble, K., Progress in Organic Coatings, 32, 131 (1997).Google Scholar
Du, W., Liu, J., Wang, Y., Li, Y. and Li, Z., Progress in Organic Coatings, 97, 146 (2016).Google Scholar
Zheng, Z., Chen, M., Jin, H., Li, W., Xue, X., Zhou, L., Pei, Y., Zhang, H. and Zhang, Z., Carbon, 96, 768 (2016).Google Scholar
Michálek, M. and Bredol, M., Adv. Mater. Sci. Eng., 2013, 929865 (2013).CrossRefGoogle Scholar
Yousefi, N., Gudarzi, M., Zheng, Q., Lin, X., Shen, X., Jia, J., Sharif, F. and Kim, J., Composites: Part A, 49, 42 (2013).CrossRefGoogle Scholar
Pan, H., Wang, X., Zhang, Y., Yu, L. and Zhang, Z., Materials Research Bulletin, 59, 117 (2014).Google Scholar
Hsiao, S., Ma, C., Tien, H., Liao, W., Wang, S., Li, S., Yang, C., Lin, S. and Yang, R., ACS Appl. Mater. Interfaces, 7,2817 ( 2015).Google Scholar
Wang, X., Xing, W., Feng, X., Yu, B., Song, L., Yeoh, G. and Hu, Y., Composites Science and Technology, 127, 142 (2016).Google Scholar