Hostname: page-component-7479d7b7d-k7p5g Total loading time: 0 Render date: 2024-07-11T00:11:38.757Z Has data issue: false hasContentIssue false

Epitaxial Growth of Bendable Cubic NiO and In2O3 Thin Films on Synthetic Mica for p- and n-type Wide-Bandgap Semiconductor Oxides

Published online by Cambridge University Press:  31 January 2020

Yuta Arata*
Affiliation:
Department of Electronics, Kyoto Institute of Technology, Matsugasaki, Sakyo-ku, Kyoto, 606-8585, Japan.
Hiroyuki Nishinaka
Affiliation:
Faculty of Electrical Engineering and Electronics, Kyoto Institute of Technology, Matsugasaki, Sakyo-ku, Kyoto, 606-8585, Japan.
Kazuki Shimazoe
Affiliation:
Department of Electronics, Kyoto Institute of Technology, Matsugasaki, Sakyo-ku, Kyoto, 606-8585, Japan.
Masahiro Yoshimoto
Affiliation:
Faculty of Electrical Engineering and Electronics, Kyoto Institute of Technology, Matsugasaki, Sakyo-ku, Kyoto, 606-8585, Japan.
Get access

Abstract

Bendable p-type NiO and n-type In2O3 thin films were epitaxially grown on synthetic mica using mist chemical vapor deposition. It was found that at a growth temperature of 400 °C, epitaxially grown cubic (111) NiO thin films developed twin rotational domains, and the epitaxial relationship between each domain and the substrate was (111) NiO [1-10] or [10-1] || (001) synthetic mica [100]. In the visible light region, the epitaxial NiO thin films showed high transparencies, and their cut-offs appeared in the UV region. Additionally, at a growth temperature of 500 °C, cubic (111) In2O3 thin films with and without Sn doping were epitaxially grown on synthetic mica. As a result of the plasma oscillation of free carriers, Sn-doped In2O3 thin films exhibited reflection characteristics in the infrared region, while maintaining their visible light transmission characteristics. Furthermore, compared with non-doped In2O3, Sn doping decreased the sheet resistance by two digits.

Type
Articles
Copyright
Copyright © Materials Research Society 2020

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Villani, F., Vacca, P., Nenna, G., Valentino, O., Burrasca, G., Fasolino, T., Minarini, C., and della Sala, D., J. Phys. Chem. C 113, 1339813402 (2009).CrossRefGoogle Scholar
Gao, W., Chang, L., Ma, H., You, L., Yin, J., Liu, J., Liu, Z., Wang, J., and Yuan, G., NPG Asia Mater. 7, e189 (2015).CrossRefGoogle Scholar
Koma, A., and Yoshimura, K., Surf. Sci. 174, 556560 (1986).CrossRefGoogle Scholar
Li, C. -I., Lin, J. -C., Liu, H. -J., Chu, M. -W., ChenH, -W. H, -W., Ma, C. -H., Tsai, C. -Y., Huang, H. -W, Lin, H. -J., Liu, H. -L., Chiu, P. -W., and Chu, Y. -H., Chem. Mater. 28, 3914 (2016).CrossRefGoogle Scholar
Ma, C. -H., Lin, J. -C., Liu, H. -J., Do, T. H., Zhu, Y. -M., Ha, T. D., Zhan, Q., Juang, J. -Y., He, Q., Arenholz, E., Chiu, P. -W., and Chu, Y. -H., Appl. Phys. Lett. 108, 253104 (2016).CrossRefGoogle Scholar
Wu, P. -C., Chen, P. -F., Do, T. H., Hsieh, Y. -H., Ma, C. -H., Ha, T. D., Wu, K. -H., Wang, Y. -J., Li, H. -B., Chen, Y. -C., Juang, J. -Y., Yu, P., Eng, L. M., Chang, C. -F., Chiu, P. -W., Tjeng, L. H., and Chu, Y. -H., ACS Appl. Mater. Interfaces 8, 33794 (2016).CrossRefGoogle Scholar
Sato, H., Minami, T., Tanaka, S., and Yamada, T., Thin Solid Films 236, 2731 (1993).CrossRefGoogle Scholar
Shifu, C., Sujuan, Z., Wei, L., and Wei, Z., J. Hazard. Mater. 155, 320326 (2008).CrossRefGoogle Scholar
Stamataki, M., Tsamakis, D., Brilis, N., Fasaki, I., Giannoudakos, A., and Kompitsas, M., Phys. Status Solidi B 205, 20642068 (2008).CrossRefGoogle Scholar
Ju, D., Xu, H., Qiu, Z., Guo, J., Zhang, J., and Cao, B., Sens. Actuators B-Chem 200, 288296 (2014).CrossRefGoogle Scholar
Park, J. H., Seo, J., Park, S., Shin, S. S., Kim, Y. C., Jeon, N. J., Shin, H. -W., Ahn, T. K., Noh, J. H., Yoon, S. C., Hwang, C. S., and Seok, S. I., Adv. Mater. 25, 40134019 (2015).CrossRefGoogle Scholar
Korošec, R. C., Bukovec, P., Pihlar, B., Vuk, A. Š., Orel, B., and Dražič, G., Solid State Ion . 165, 191200, (2003).CrossRefGoogle Scholar
Kamiya, T., Ohta, H., Kamiya, M., Nomura, K., Ueda, K., Hirano, M., and Hosono, H., J. Mater. Res. 19, 913920 (2004).CrossRefGoogle Scholar
Ikenoue, T., Inoue, J., Miyake, M., and Hirato, T., J. Cryst. Growth 507, 379383 (2019).CrossRefGoogle Scholar
Ivanovskaya, M., Gurlo, A., and Bogdanov, P., Sens. Actuators B: Chem 77, 264267 (2001).CrossRefGoogle Scholar
Mistry, B. V., Bhatt, P., Bhavsar, K. H., Trivedi, S. J., Trivedi, U. N., and Joshi, U. S., Thin Solid Films 519, 38403843 (2011).CrossRefGoogle Scholar
Kokubun, Y., Kubo, S., and Nakagomi, S., Appl. Phys. Express 9, 091101 (2016).CrossRefGoogle Scholar
Weiher, R. L., and Ley, R. P., J. Appl. Phys. 37, 299302 (1966).CrossRefGoogle Scholar
Hamberg, I., and Granqvist, C.G., J. Appl. Phys. 60, R123 (1986).CrossRefGoogle Scholar
Kulkarni, A. K., Schulz, K. H., Lim, T. S., and Khan, M., Thin Solid Films 345, 273277, (1999).CrossRefGoogle Scholar
Betz, U., Olsson, M. K., Marthy, J., Escolá, M. F., and Atamny, F., Surf. Coat. Technol. 200, 57515759 (2006).CrossRefGoogle Scholar
Manifacier, J. C., and Szepessy, L., Appl. Phys. Lett. 31, 459462 (1977).CrossRefGoogle Scholar
Narukawa, Y., Narita, J., Sakamoto, T., Deguchi, K., Yamada, T., and Mukai, T., Jpn. J. Appl. Phys. 45, L1084L1086 (2006).CrossRefGoogle Scholar
Suzuki, N., Kaneko, K., and Fujita, S., J. Cryst. Growth 364, 3033 (2013).CrossRefGoogle Scholar
Nishinaka, H., and Yoshimoto, M., Cryst. Growth Des. 18, 40224028 (2018).CrossRefGoogle Scholar
Kim, B. -H., Lee, J. -Y., Choa, Y. -H., Higuchi, M., and Mizutani, N., Mater. Sci. Eng. B 107, 289294 (2004).CrossRefGoogle Scholar
Lu, J. G., Kawaharamura, T., Nishinaka, H., Kamada, Y., Ohshima, T., and Fujita, S., J. Cryst. Growth 299, 1-10 (2007).CrossRefGoogle Scholar
Shinohara, D., and Fujita, S., Jpn. J. Appl. Phys. 47, 73117313 (2008).CrossRefGoogle Scholar
Lee, S. -D., Kaneko, K., and Fujita, S., Jpn. J. Appl. Phys. 55, 1202B8 (2016).CrossRefGoogle Scholar
Oshima, T., Nakazono, T., Mukai, A., and Ohtomo, A., J. Cryst. Growth 359, 6063 (2012).CrossRefGoogle Scholar
Nishinaka, H., Tahara, D., and Yoshimoto, M., Jpn. J. Appl. Phys. 55, 1202BC (2016).CrossRefGoogle Scholar
Shannon, R. D., Solid State Commun . 4, 629630 (1966).CrossRefGoogle Scholar