Hostname: page-component-8448b6f56d-cfpbc Total loading time: 0 Render date: 2024-04-18T03:16:21.373Z Has data issue: false hasContentIssue false

Encapsulated perovskite based photovoltaics devices with high stability

Published online by Cambridge University Press:  02 May 2016

Man Kwong Wong*
Affiliation:
The department of Physics, The University of Hong Kong, Pokfulam, Hong Kong.
Qi Dong
Affiliation:
The department of Physics, The University of Hong Kong, Pokfulam, Hong Kong.
Fangzhou Liu
Affiliation:
The department of Physics, The University of Hong Kong, Pokfulam, Hong Kong.
Aleksandra B. Djurišić
Affiliation:
The department of Physics, The University of Hong Kong, Pokfulam, Hong Kong.
Wai Kin Chan
Affiliation:
The department of Chemistry, The University of Hong Kong, Pokfulam, Hong Kong.
Hangkong Li
Affiliation:
The department of Civil Engineering, The University of Hong Kong, Pokfulam, Hong Kong.
Kaimin Shih
Affiliation:
The department of Civil Engineering, The University of Hong Kong, Pokfulam, Hong Kong.
Annie Ng
Affiliation:
The department of Electronic and Information Engineering, The Hong Kong Polytechnic University, Hung Hom, Hong Kong.
Charles Surya
Affiliation:
The department of Electronic and Information Engineering, The Hong Kong Polytechnic University, Hung Hom, Hong Kong.
*
Get access

Abstract

Perovskite based photovoltaics have recently emerged as the forerunner in the next generation photovoltaic technology because of the rapid increase of power conversion efficiency (PCE). However, it is well recognized that the exposure to moisture, heat and light causes the degradation of perovskite [1] (especially for methylammonium lead iodide (CH3NH3PbI3) which is the most commonly used perovskite material). It makes stability a main issue for the commercialization of perovskite based photovoltaics. Hence, an advanced encapsulation method is one of the keys to improve the stability. Here we present a comparison study between different encapsulation methods. Perovskite based photovoltaics devices were encapsulated using UV epoxy resin, with or without the addition of desiccant and the deposition of SiO2 layer. By minimizing the ingress of moisture and oxygen, devices with storage in ambient air under one sun continuous illumination could retain 94 % of the initial performance (PCE around 13%) after two days.

Type
Articles
Copyright
Copyright © Materials Research Society 2016 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Song, T.-B., Chen, Q., Zhou, H., Jiang, C., Wang, H.-H., Yang, Y. M., Liu, Y., You, J. and Yang, Y., J. Mater. Chem. A 3, 9032 (2015).CrossRefGoogle Scholar
Niu, G., Li, W., Meng, F., Wang, L., Dong, H. and Qiu, Y., J. Mater. Chem. A 2, 705 (2014).Google Scholar
Noh, J. H., Im, S. H., Heo, J. H., Mandal, T. N., and Seok, S. I., Nano Lett. 13, 1764 (2013).CrossRefGoogle Scholar
Zhou, H., Chen, Q., Li, G., Luo, S., Song, T.-B., Duan, H.-S., Hong, Z., You, J., Liu, Y. and Yang, Y., Science 345, 542 (2014).CrossRefGoogle Scholar
Han, Y., Meyer, S., Dkhissi, Y., Weber, K., Pringle, J. M., Bach, U., Spiccia, L. and Cheng, Y.-B., J. Mater. Chem. A 3, 8139 (2015).Google Scholar
Liu, F., Dong, Q., Wong, M. K., Djurišić, A. B., Ng, A., Ren, Z., Shen, Q., Surya, C., Chan, W. K., Wang, J., Ng, A. M. C., Liao, C., Li, H., Shih, K., Wei, C., Su, H. and Dai, J., Adv. Energy Mater., 2016, DOI: 10.1002/aenm.201502206.Google Scholar
Leijtens, T., Eperon, G. E, Pathak, S., Abate, A., Lee, M. M. and Snaith, H. J., Nat. Commun. 4, 2885 (2013).Google Scholar
Fakhri, M., Görrn, P. and Riedl, T., AM-FPD 13, 39 (2013).Google Scholar
Wuu, D.S., Lo, W.C., Chang, L.S. and Horng, R.H., Thin Solid Films 468, 105 (2004).Google Scholar
Perrotta, A., García, S. J., Michell, J. J., Andringa, A.-M. and Creatore, M., ACS Appl. Mater. Interfaces 7, 15968 (2015).CrossRefGoogle Scholar
Reese, M. O., Gevorgyan, S. A., Jørgensen, M., Bundgaard, E., Kurtz, S. R., Ginley, D. S., Olson, D. C., Lloyd, M. T., Morvillo, P., Katz, E. A., Elschner, A., Haillant, O., Currier, T. R., Shrotriya, V., Hermenau, M., Riede, M., Kirov, K. R., Trimmel, G., Rath, T., Inganäs, O., Zhang, F., Andersson, M., Tvingstedt, K., Lira-Cantu, M., Laird, D., McGuiness, C., Gowrisanker, S. (J.) Gowrisanker, Pannone, M., Xiao, M., Hauch, J., Steim, R., DeLongchamp, D. M., Rösch, R., Hoppe, H., Espinosa, N., Urbina, A., Yaman- Uzunoglu, G., Bonekamp, J.-B., Breemen, A. J. M. v., Girotto, C., Voroshazi, E. and Krebs, F. C., Sol. Energy Mater. Sol. Cells 95, 1253 (2011).Google Scholar
You, J., Meng, L., Song, T.-B., Guo, T.-F., Yang, Y. (M.), Chang, W.-H., Hong, Z., Chen, H., Zhou, H., Chen, Q., Liu, Y., Marco, N. D. and Yang, Y., Nat. Nanotechnol. 11, 75 (2016).CrossRefGoogle Scholar
Yamada, Y., Nakamura, T., Endo, M., Wakamiya, A., and Kanemitsu, Y., J. Am. Chem. Soc. 136, 11610 (2014).CrossRefGoogle Scholar
Weerasinghe, H. C., Dkhissi, Y., Scully, A. D., Caruso, R. A. and Cheng, Y.-B., Nano Energy 18, 118 (2015).CrossRefGoogle Scholar