Hostname: page-component-8448b6f56d-jr42d Total loading time: 0 Render date: 2024-04-20T02:17:58.347Z Has data issue: false hasContentIssue false

Effects of TiO2 Blocking Layer on Photovoltaic Characteristics of TiO2/Nb2O5 Dye Sensitized Solar Cells

Published online by Cambridge University Press:  20 January 2020

Brian O. Owino*
Affiliation:
Department of Physics, University of Nairobi, P.O Box 30197-00100 Nairobi, Kenya
Francis W. Nyongesa
Affiliation:
Department of Physics, University of Nairobi, P.O Box 30197-00100 Nairobi, Kenya
Alex A. Ogacho
Affiliation:
Department of Physics, University of Nairobi, P.O Box 30197-00100 Nairobi, Kenya
Bernard O. Aduda
Affiliation:
Department of Physics, University of Nairobi, P.O Box 30197-00100 Nairobi, Kenya
Benjamin V. Odari
Affiliation:
Department of Physics, Masinde Muliro University of Science and Technology, P.O Box 190-50100 Kakamega, Kenya
Get access

Abstract

This study reports on the effect of introducing TiO2 compact layer on the photovoltaic characteristics of TiO2/Nb2O5 composite dye sensitized solar cell. The compact layer was deposited by spray pyrolysis technique. It was observed that introduction of 60 nm thick compact layer improved the short circuit current density Jsc ,Open circuit voltage Voc, and efficiency of the cell from 4.9 mA/cm2 to 8.2 mA/cm2, 6.8×10-1 V to 7.2×10-1 V and 1.9 % to 3.4 % respectively compared to traditional cell prepared without compact layer. Electrochemical impedance spectroscopy confirmed an increase in recombination resistance from 5.5×101 Ω.cm2 for bare DSSC to 9.0×101 Ω.cm2 for DSSC with compact layer thereby improving electron lifetime of the cells from 2.5×10-4 s to 386.9×10-4 s.

Type
Articles
Copyright
Copyright © Materials Research Society 2020

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Wu, W.-Y., Hsu, C.-F., Wu, M.-J., Chen, C.-N., and Huang, J.-J., Appl. Phys. A 123, 18 (2017).Google Scholar
O’Regan, B. and Grätzel, M., Nature 353, 737740 (1991).CrossRefGoogle Scholar
Ren, Y., Li, Y., Chen, S., Liu, J., Zhang, J., and Wang, P., Energy Environ. Sci. 9, 13901399 (2016).CrossRefGoogle Scholar
Sedneva, T.A., Lokshin, E.P., Belikov, M.L., and Belyaevskii, A.T., Inorg. Mater. 49, 382389 (2013).CrossRefGoogle Scholar
Xie, J., Hao, Y., Li, M., Lian, Y., and Bian, L., World J. Eng. 14, 2279–283 (2017).CrossRefGoogle Scholar
Liu, S., Tao, W., Li, J., Yang, Z., and Liu, F., Powder Technol. 155, 187192 (2005).CrossRefGoogle Scholar
Rani, R.A., Zoolfakar, A.S., O’Mullane, A.P., Austin, M.W., and Kalantar-Zadeh, K., J Mater Chem A 2, 1568315703 (2014).CrossRefGoogle Scholar
Nguu, J.N., Aduda, B.O., Nyongesa, F.W., and Musembi, R.J., J. Energy Power Eng. 8, 757764 (2014).Google Scholar
Xia, J., Masaki, N., Jiang, K., and Yanagida, S., Chem Commun 14, 138140 (2007).CrossRefGoogle Scholar
Roh, S.-J., Mane, R.S., Min, S.-K., Lee, W.-J., Lokhande, C.D., and Han, S.-H., Appl. Phys. Lett. 89 ,14 (2006).CrossRefGoogle Scholar
Sharma, S., Shriwastava, S., Kumar, S., Bhatt, K., and Tripathi, C.C., Opto-Electron. Rev. 26 ,223235 (2018).CrossRefGoogle Scholar
Hong, S., Han, A., Lee, E.C., Ko, K.-W., Park, J.-H., Song, H.-J., Han, M.-H., and Han, C.-H., Curr. Appl. Phys. 15, 574579 (2015).CrossRefGoogle Scholar
Waita, S.M., Aduda, B.O., Mwabora, J.M., Niklasson, G.A., Granqvist, C.G., and Boschloo, G., J. Electroanal. Chem. 637, 7983 (2009).CrossRefGoogle Scholar
Xia, J., Masaki, N., Jiang, K., and Yanagida, S., J. Phys. Chem. B 110, 2522225228 (2006).CrossRefGoogle Scholar
Peng, B., Jungmann, G., Jäger, C., Haarer, D., Schmidt, H.-W., and Thelakkat, M., Coord. Chem. Rev. 248, 14791489 (2004).CrossRefGoogle Scholar
León, A., Reuquen, P., Garín, C., Segura, R., Vargas, P., Zapata, P., and Orihuela, P., Appl. Sci. 7, (2017).CrossRefGoogle Scholar
Arunachalam, A., Dhanapandian, S., Manoharan, C., and Sivakumar, G., Spectrochim. Acta. A. Mol. Biomol. Spectrosc. 138, 105112 (2015).CrossRefGoogle Scholar
Nandani, A. Supriyanto, Ramelan, A.H., and Nurosyid, F., J. Phys. Conf. Ser. 1011, 16 (2018).CrossRefGoogle Scholar
Ito, S., Murakami, T.N., Comte, P., Liska, P., Grätzel, C., Nazeeruddin, M.K., and Grätzel, M., Thin Solid Films 516, 46134619 (2008).CrossRefGoogle Scholar
O’Regan, B.C., Scully, S., Mayer, A.C., Palomares, E., and Durrant, J., J. Phys. Chem. B 109, 46164623 (2005).CrossRefGoogle Scholar
Fakharuddin, A., Ahmed, I., Khalidin, Z., Yusoff, M.M., and Jose, R., J. Appl. Phys. 115, 1-9 (2014).CrossRefGoogle Scholar
Garcia-Belmonte, G., Munar, A., Barea, E.M., Bisquert, J., Ugarte, I., and Pacios, R., Org. Electron. 9, 847851 (2008).CrossRefGoogle Scholar
Todinova, A., Idígoras, J., Salado, M., Kazim, S., and Anta, J.A., J. Phys. Chem. Lett. 6, 39233930 (2015).CrossRefGoogle Scholar