Hostname: page-component-848d4c4894-xm8r8 Total loading time: 0 Render date: 2024-06-22T23:16:10.407Z Has data issue: false hasContentIssue false

Effects of Al2O3 Type on Activity of Al2O3-Supported Rh Catalysts in Single-Walled Carbon Nanotubes Growth by CVD

Published online by Cambridge University Press:  16 January 2017

Hoshimitsu Kiribayashi
Affiliation:
Department of Materials Science and Engineering, Meijo University, 1-501 Shiogamaguchi, Tempaku, Nagoya 468-8502, Japan
Takayuki Fujii
Affiliation:
Department of Materials Science and Engineering, Meijo University, 1-501 Shiogamaguchi, Tempaku, Nagoya 468-8502, Japan
Takahiro Saida
Affiliation:
Department of Applied Chemistry, Meijo University, 1-501 Shiogamaguchi, Tempaku, Nagoya 468-8502, Japan
Shigeya Naritsuka
Affiliation:
Department of Materials Science and Engineering, Meijo University, 1-501 Shiogamaguchi, Tempaku, Nagoya 468-8502, Japan
Takahiro Maruyama*
Affiliation:
Department of Applied Chemistry, Meijo University, 1-501 Shiogamaguchi, Tempaku, Nagoya 468-8502, Japan
Get access

Abstract

We carried out single-walled carbon nanotube (SWCNT) growth using a Rh catalyst on Al2O3 buffer layers that were prepared by three different methods based on electron beam (EB) evaporation: native oxidation of Al layer deposited by EB ([EB(Al)+NO]-Al2O3 layer); thermal oxidation of Al layer deposited by EB ([EB(Al)+TO]-Al2O3 layer); EB deposition of Al2O3 layer ([EB(Al2O3)]-Al2O3 layer). SWCNT yield was the largest for the [EB(Al2O3)]-Al2O3 layer, while SWCNTs were not grown on the [EB(Al)+NO]- Al2O3 layer. Transmission electron spectroscopy showed that most of Rh particle sizes were distributed between 1.0 and 2.6 nm on the [EB(Al)+NO]- Al2O3 and [EB(Al2O3)]- Al2O3 layers, while they were distributed between 1.8 and 4.2 nm on the [EB(Al)+TO]- Al2O3 layer. This result indicates that surface migration of Rh catalysts was suppressed on the [EB(Al2O3)]- Al2O3 layer, resulting in the largest SWCNT yield. On the other hand, enlargement of Rh catalyst particles occurred on the [EB(Al)+TO]- Al2O3 layer, leading to the reduction of SWCNT yield. Taking into account our previous study, inward diffusion of Rh catalysts into the Al2O3 buffer layer inhibited SWCNT growth on the [EB(Al)+NO]- Al2O3 layer, although enlargement of Rh particle size was suppressed. We also carried out ultra-violet photoemission measurements for Rh catalysts on the [EB(Al)+TO]- Al2O3 and [EB(Al2O3)]- Al2O3 layers and investigated the electronic states of Rh catalysts on them.

Type
Articles
Copyright
Copyright © Materials Research Society 2017 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Iijima, S., Ichihashi, T., Nature 363, 603 (1993).Google Scholar
Javey, A., Guo, J., Wang, Q., Lundstrom, M., Dai, H., Nature 424, 654 (2003).Google Scholar
Dürkop, T., Getty, S.A., Cobas, E., Fuhre, M. S., Nano Lett. 4, 35 (2004).Google Scholar
Hong, S., Myung, S., Nat. Nanotechnol. 2, 207 (2007).Google Scholar
Tans, S. J., Vershueren, A. R. M., Dekker, C., Nature 393, 49 (1998).Google Scholar
Wind, S. J., Appenzeller, J., Martel, R., Derycke, V., Abouris, P. H., Appl. Phys. Lett. 80, 3817 (2002).Google Scholar
Kondo, D., Sato, S., Kawabata, A., Awano, Y., Nanotechnology 19, 435601 (2008).Google Scholar
Iwasaki, T., Robertson, J., Kawarada, H., Nano Lett. 8, 886 (2008).Google Scholar
Dai, H., Rinzler, A. G., Nikolaev, P., Thess, A., Colvert, D. T., Smalley, R. E., Chem. Phys. Lett. 260, 471 (1996).Google Scholar
Maruyama, S., Kojima, R., Miyauchi, Y., Chiashi, S., Kohno, M., Chem. Phys. Lett. 360, 229 (2002).Google Scholar
Hata, K., Futaba, D. N., Mizuno, K., Namai, T., Yumura, M., Iijima, S., Science 306, 1362 (2004).Google Scholar
Noda, S., Hasegawa, K., Sugime, H., Kakechi, K., Zhang, Z., Maruyama, S., Yamaguchi, Y., Jpn. J. Appl. Phys. 46, L399 (2007).Google Scholar
Cantoro, M., Hofmann, S., Pisana, S., Scardaci, V., Parvez, A.. Ducati, C., Ferrari, A. C., Blackburn, A. M., Wang, K. Y., Robertson, J., Nano Lett. 6, 1107 (2006).Google Scholar
Maruyama, T., Kondo, H., Ghosh, R., Kozawa, A., Naritsuka, S., Iizumi, Y., Okazaki, T., Iijima, S., Carbon 96, 6 (2016).Google Scholar
Kiribayashi, H., Fujii, T., Kozawa, A., Ogawa, S., Saida, T., Naritsuka, S., Maruyama, T., J. Cryst. Growth, available on line 27 October (2016) (in press).Google Scholar
Vesselli, E., Baraldi, A., Comelli, G., Lizzit, S., Rosei, R., ChemPhysChem 5, 1133 (2004).Google Scholar
Wang, J. H., Lee, C. S., Lin, M. C., J. Phys. Chem. C 113, 6681 (2009).CrossRefGoogle Scholar
Kozawa, A., Kiribayashi, H., Ogawa, S., Saida, T., Naritsuka, S., Maruyama, T., Diam. Relat. Mater. 63, 159 (2016)Google Scholar
Jorio, A., Saito, R., Hahner, J. H., Liever, C. M., Hunter, M., McClure, T., Dresselhaus, G., Dresselhaus, M. S., Phys. Rev. Lett. 86, 1118 (2001).Google Scholar
Amama, P. B., Pint, C. L., Kim, S. M., McJilton, L., Eyink, K. G., Stach, E. A., Hauge, R. H., Maruyama, B., ACS Nano 4, 895 (2010).Google Scholar
Nørskov, J. K., Bligaard, T., Rossmeisl, J., Christensen, C. H., Nature Chem. 1, 37 (2009).Google Scholar
Höchst, H., Kelly, M. K., Phys. Rev. B 30, 1708 (1984).Google Scholar