Hostname: page-component-8448b6f56d-c47g7 Total loading time: 0 Render date: 2024-04-16T23:19:49.663Z Has data issue: false hasContentIssue false

Effect of nickel content in the corrosion process of TiC/Cu-Ni composites immersed in synthetic seawater

Published online by Cambridge University Press:  03 January 2020

Miguel A. Téllez-Villaseñor
Affiliation:
Instituto de Investigación en Metalurgia y Materiales, Universidad Michoacana de San Nicolás de Hidalgo, Av. Francisco J. Mujica S/N Ciudad Universitaria, Morelia 58030, Mich., México
Carlos A. León Patino*
Affiliation:
Instituto de Investigación en Metalurgia y Materiales, Universidad Michoacana de San Nicolás de Hidalgo, Av. Francisco J. Mujica S/N Ciudad Universitaria, Morelia 58030, Mich., México
Ricardo Galván Martínez
Affiliation:
Unidad Anticorrosión, Instituto de Ingeniería, Universidad Veracruzana Av. S.S. Juan Pablo II. S/N, Zona Universitaria, Fracc. Costa Verde. CP. 94294, Veracruz, Veracruz, México
Ena A. Aguilar Reyes
Affiliation:
Instituto de Investigación en Metalurgia y Materiales, Universidad Michoacana de San Nicolás de Hidalgo, Av. Francisco J. Mujica S/N Ciudad Universitaria, Morelia 58030, Mich., México
Get access

Abstract

The work presents an electrochemical study of the corrosion behaviour of two TiC/Cu-Ni metal matrix composites with a content of 10 and 20 wt.% Ni immersed in synthetic seawater. The composites were synthesized by a capillary infiltration technique, obtaining dense materials TiC/Cu-10Ni and TiC/Cu-20 Ni with a residual porosity of 1.8 and 1.7%, respectively. The corrosion rate (CR) was evaluated from the techniques of polarization curves (PC), linear polarization resistance (LPR) and electrochemical impedance spectroscopy (EIS). Electrochemical measurements were carried out under static conditions, ambient temperature and atmospheric pressure at 24 hours exposure in the electrolytic medium. The corrosion rate is affected by the Ni content in the matrix, with less corrosion in the composite with a higher Ni content. The higher content of Ni in the Cu-Ni alloy provides higher passivation and stability to the corrosion products film that are absorbed on the composite surface. Microscopic examination (SEM) showed a characteristic morphology of a corrosion mechanism of the localized type (pits and crevices) generated by a differential aeration, where the TiC/Cu-10Ni composite showed greater degradation.

Type
Articles
Copyright
Copyright © Materials Research Society 2020 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Radhika, N., Thirumalini, S. and Shivashankar, A., T Indian I Metals . 71, 1311 (2017).CrossRefGoogle Scholar
Jha, P., Gautam, R. K., and Tyagi, R., Friction 5, 437 (2017).CrossRefGoogle Scholar
Li, L., Wong, Y., Fuh, J. Y. and Lu, L., J Mater Process Tech . 113, 563-567 (2001).CrossRefGoogle Scholar
Badawy, W. A., Ismail, K. M., and Fathi, A. M., Electrochim Acta 50, 3603-3608 (2005).CrossRefGoogle Scholar
Thurber, C. R., Ahmad, Y. H., Sanders, S.F., Al-Shenawa, A., D’Souza, N., Mohamed, A. M. A. and Golden, T.D., Curr Appl Phys. 16, 387-396 (2016).CrossRefGoogle Scholar
Popoola, A. P. I., Pityana, S.L. and Popoola, O.M., J S Afr I Min Metall. 111, 345 (2011).Google Scholar
Alvarez, N., Leon, C. A., Contreras, A., Orozco-Cruz, R. and Galvan-Martinez, R., in Materials Characterization, edited by Campos, R. (Springer, Switzerland, 2015), p. 147-156.Google Scholar
Hemanth, J., IOP Conf. Ser.: Mater. Sci. Eng. 225, (2017) 012192.CrossRefGoogle Scholar
Durán-Olvera, J. M., Orozco-Cruz, R., Galván-Martínez, R., León, C. A. and Contreras, A., MRS Advances, 2, 2865-2873 (2017).CrossRefGoogle Scholar
Albiter, A., Contreras, A., Salazar, M. and Gonzalez-Rodriguez, J. G., J Appl Electrochem . 36, 303-308 (2005).CrossRefGoogle Scholar
Zakaria, H. M., Ain Shams Engineering Journal 5, 831-838 (2014).CrossRefGoogle Scholar
Falcon, L. A., Bedolla, E., Lemus, J., Leon, C., Rosales, I. and Gonzalez-Rodriguez, J. G., International Journal of Corrosion 2011, 1-7 (2011).CrossRefGoogle Scholar
Zhang, Q., Lin, N. and He, Y., Int J Refract Met H. 38, 15-25 (2013).CrossRefGoogle Scholar
ASTM D-1141 Standard Practice for the Preparation of Substitute Ocean Water, (2013).Google Scholar
ASTM G1 Standard Practice for Preparing, Cleaning, and Evaluation Corrosion Test Specimens, (2011).Google Scholar
León-Patiño, C. A., Braulio-Sánchez, M., Aguilar-Reyes, E. A., Bedolla-Becerril, E. and Bedolla-Jacuinde, A., Wear . 426-427, 989-995 (2019).CrossRefGoogle Scholar
Jones, D.A., Principies and Prevention of Corrosion, 2nd ed. (Prentice- Hall, New Jersey, 1996) p. 170, 199-220.Google Scholar
Fontana, M. G., Corrosion Engineering, 3rd ed. (McGraw-Hill, Singapore, 1987) p. 41-66, 240-244.Google Scholar
Galvan-Martinez, R., Baltazar, M.A., Mejia, E., Salaza, M., Contreras, A., Orozco-Cruz, R., Int J Electrochem Sc . 13, 95619573 (2018).CrossRefGoogle Scholar
Roberge, P. R., Handbook of Corrosion Engineering, 2nd ed. (McGraw Hill, NY, 2012) p. 845.Google Scholar
Zamin, M. and Ives, M.B., Corrosion , 29, 319-324 (1973).CrossRefGoogle Scholar
Orozco-Cruz, R., Ávila, E., Mejía, E., Pérez, T., Contreras, A., Galván-Martínez, R., Int. J. Electrochem. Sci., 12, 3133-3152 (2017).CrossRefGoogle Scholar
Yuan, S.J., Pehkonen, S.O., Corrosion Science. 49, 1276-1304 (2007).CrossRefGoogle Scholar
Cottis, R. and Turgoose, S., Electrochemical Impedance and Noise, Corrosion Testing Made Easy, (NACE, Houston, 1999) p. 43.Google Scholar
Milosev, I., Metikos-Hukovic, M., Electrochim Acta, 42, 1537-1548 (1997).CrossRefGoogle Scholar
Ezuber, H. M., Al-Shater, A., Murra, F. and Al-Shamri, N., 16th Middle East Corrosion Conference & Exhibition, Proceeding, (2016), NACE Paper No. MECCFEB16-8103.Google Scholar