Hostname: page-component-77c89778f8-swr86 Total loading time: 0 Render date: 2024-07-17T09:55:46.707Z Has data issue: false hasContentIssue false

Development of Dissipative Particle Dynamics framework for modeling hydrogels with degradable bonds

Published online by Cambridge University Press:  02 March 2020

Vaibhav Palkar
Affiliation:
Department of Materials Science and Engineering, Clemson University, Clemson, SC, 29634
Chandan K. Choudhury
Affiliation:
Department of Materials Science and Engineering, Clemson University, Clemson, SC, 29634
Olga Kuksenok*
Affiliation:
Department of Materials Science and Engineering, Clemson University, Clemson, SC, 29634
Get access

Abstract

Controlled degradation of hydrogels enables several applications of these materials, including controlled drug and cell release applications and directed growth of neural networks. These applications motivate the need of a simulation framework for modeling controlled degradation in hydrogels. We develop a Dissipative Particle Dynamics (DPD) framework for hydrogel degradation. As a model hydrogel, we prepare a network formed by end-linking tetra-arm polyethylene glycol precursors. We model bond breaking during degradation of this hydrogel as a stochastic process. The fraction of degradable bonds follows first order degradation kinetics. We characterize the rate of mass loss during degradation process.

Type
Articles
Copyright
Copyright © Materials Research Society 2020

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Azagarsamy, M. A., McKinnon, D. D., Age, D. L. and Anseth, K. S., ACS Macro Lett. 3 (6), 515-519 (2014).CrossRefGoogle Scholar
McKinnon, D. D., Brown, T. E., Kyburz, K. A., Kiyotake, E. and Anseth, K. S., Biomacromolecules 15 (7), 2808-2816 (2014).CrossRefGoogle Scholar
Kharkar, P. M., Kiick, K. L. and Kloxin, A. M., Polym. Chem. 6 (31), 5565-5574 (2015).CrossRefGoogle Scholar
Truong, V. X., Li, F. Y. and Forsythe, J. S., ACS Appl. Mater. Interfaces 9 (38), 32441-32445 (2017).CrossRefGoogle Scholar
Griffin, D. R. and Kasko, A. M., ACS Macro Lett. 1 (11), 1330-1334 (2012).CrossRefGoogle Scholar
Lin, C. C., and Metters, A. T., Adv. Drug Delivery Rev. 58 (12-13), 1379-1408 (2006).CrossRefGoogle Scholar
Li, J. and Mooney, D. J., Nature Reviews Materials 1 (12), 1-17 (2016).Google Scholar
Zhang, Y., Wang, R., Hua, Y., Baumgartner, R., and Cheng, J., ACS Macro Letters, 3 (7), 693-697 (2014).CrossRefGoogle Scholar
Tibbitt, M. W., Han, B. W., Kloxin, A. M., and Anseth, K. S., J. of Biomed. Mat. Res. Part A, 100 (7), 1647 (2012).CrossRefGoogle Scholar
Metters, A. T., Bowman, C. N., and Anseth, K. S., The Journal of Physical Chemistry B, 104 (30), 7043-7049 (2000).CrossRefGoogle Scholar
Stillman, Z., Jarai, B. M., Raman, N., Patel, P., and Fromen, C. A., Polymer Chemistry, 11 (2), 568-580 (2020).CrossRefGoogle Scholar
Li, X., Tsutsui, Y., Matsunaga, T., Shibayama, M., Chung, U. and Sakai, T., Macromolecules 44 (9), 3567-3571 (2011).CrossRefGoogle Scholar
Sakai, T., Matsunaga, T., Yamamoto, Y., Ito, C., Yoshida, R., Suzuki, S., Sasaki, N., Shibayama, M. and Chung, U. I., Macromolecules 41 (14), 5379-5384 (2008).CrossRefGoogle Scholar
Lin, T. S., Wang, R., Johnson, J. A. and Olsen, B. D., Macromolecules 51 (3), 1224-1231 (2018).CrossRefGoogle Scholar
Lange, F., Schwenke, K., Kurakazu, M., Akagi, Y., Chung, U. I., Lang, M., Sommer, J. U., Sakai, T. and Saalwachter, K., Macromolecules 44 (24), 9666-9674 (2011).CrossRefGoogle Scholar
Schwenke, K., Lang, M. and Sommer, J. U., Macromolecules 44 (23), 9464-9472 (2011).CrossRefGoogle Scholar
Čomić, L. and Nagy, B., Acta Crystallographica Section A: Foundations and Advances 72(5), 570-581 (2016).CrossRefGoogle Scholar
Jha, P. K., Zwanikken, J. W., Detcheverry, F. A., De Pablo, J. J. and de la Cruz, M. O., Soft Matter 7 (13), 5965-5975 (2011).CrossRefGoogle Scholar
Yong, X., Kuksenok, O., Matyjaszewski, K. and Balazs, A. C., Nano Letters 13 (12), 6269-6274 (2013).CrossRefGoogle Scholar
Groot, R. D. and Warren, P. B., J. Chem. Phys. 107 (11), 4423-4435 (1997).CrossRefGoogle Scholar
Groot, R. D. and Rabone, K. L., Biophys. J. 81 (2), 725-736 (2001).CrossRefGoogle Scholar
Metters, A. T. and Hubbell, J. A., Biomacromolecules 6 (1), 290-301 (2005.).CrossRefGoogle Scholar
Español, P. and Warren, P. B., J. Chem. Phys. 146 (15), 150901 (2017).CrossRefGoogle Scholar
Sirk, T. W., Slizoberg, Y. R., Brennan, J. K., Lisal, M. and Andzelm, J. W., J. Chem. Phys. 136 (13), 11 (2012).CrossRefGoogle Scholar
Choudhury, C. K. and Kuksenok, O., MRS Advances 3 (26), 1469-1474 (2018).CrossRefGoogle Scholar
Plimpton, S., J. Comput. Phys. 117 (1), 1-19 (1995).URL: https://lammps.sandia.gov/index.htmlCrossRefGoogle Scholar
Choudhury, C. K., Palkar, V., and Kuksenok, O., Langmuir (2020) doi:10.1021/acs.langmuir.9b03486.Google Scholar
Akkermans, R. L. C., Toxvaerd, S. and Briels, W. J., J. Chem. Phys. 109 (7), 2929-2940(1998).CrossRefGoogle Scholar
Milchev, A., Wittmer, J. P. and Landau, D. P., J. Chem. Phys. 112 (3), 1606-1615 (2000).CrossRefGoogle Scholar
Brown, T. E., Marozas, I. A. and Anseth, K. S., Adv. Mater. 29 (11), 7 (2017).CrossRefGoogle Scholar
Gopferich, A., Macromolecules 30 (9), 2598-2604 (1997).CrossRefGoogle Scholar