Hostname: page-component-68945f75b7-s56hc Total loading time: 0 Render date: 2024-08-05T21:39:15.888Z Has data issue: false hasContentIssue false

CVD Growth of Monolayer MoS2 on Sapphire Substrates by using MoO3 Thin Films as a Precursor for Co-Evaporation

Published online by Cambridge University Press:  27 December 2018

Sajeevi S Withanage*
Affiliation:
Department of Physics, University of Central Florida, Orlando, FL 32816, United States NanoScience Technology Center, University of Central Florida, Orlando, FL 32816, United States
Saiful I Khondaker
Affiliation:
Department of Physics, University of Central Florida, Orlando, FL 32816, United States NanoScience Technology Center, University of Central Florida, Orlando, FL 32816, United States Department of Electrical & Computer Engineering, University of Central Florida, Orlando, FL 32816, United States
Get access

Abstract

Scalable synthesis of two-dimensional molybdenum disulfide (MoS2) via chemical vapor deposition (CVD) is of considerable interests for many applications in electronics and optoelectronics. Here, we investigate the CVD growth of MoS2 single crystals on sapphire substrates by using thermally evaporated molybdenum trioxide (MoO3) thin films as molybdenum (Mo) source instead of conventionally used MoO3 powder for co-evaporation synthesis. The MoO3 thin film source provides uniform Mo vapor pressure in the growth chamber resulting in clean and reproducible MoS2 triangles without any oxide or oxysulfide species. Scanning electron microscopy, Raman spectroscopy, photoluminescence spectroscopy and atomic force microscopy characterization were performed to characterize the growth results. Very high photoluminescence (PL) response was observed at 1.85 eV which is a good implication of high optical quality of these crystals directly grown on sapphire substrate.

Type
Articles
Copyright
Copyright © Materials Research Society 2018 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Tsai, M. L., Su, S. H., Chang, J. K., Tsai, D. S., Chen, C. H., Wu, C. I., Li, L. J., Chen, L. J. and He, J. H., Acs Nano 8 (8), 83178322 (2014).CrossRefGoogle Scholar
Lopez-Sanchez, O., Lembke, D., Kayci, M., Radenovic, A. and Kis, A., Nature Nanotechnology 8 (7), 497501 (2013).CrossRefGoogle Scholar
Li, M., Chen, J.-S., Routh, P. K., Zahl, P., Nam, C.-Y. and Cotlet, M., Adv Funct Mater 28 (29), 1707558 (2018).CrossRefGoogle Scholar
Salehzadeh, O., Tran, N. H., Liu, X., Shih, I. and Mi, Z., Nano Lett 14 (7), 41254130 (2014).CrossRefGoogle Scholar
Yore, A. E., Smithe, K. K. H., Crumrine, W., Miller, A., Tuck, J. A., Redd, B., Pop, E., Wang, B. and Newaz, A. K. M., The Journal of Physical Chemistry C 120 (42), 2408024087 (2016).CrossRefGoogle Scholar
Lin, Y.-C., Zhang, W., Huang, J.-K., Liu, K.-K., Lee, Y.-H., Liang, C.-T., Chu, C.-W. and Li, L.J., Nanoscale 4 (20), 66376641 (2012).CrossRefGoogle ScholarPubMed
Withanage, S. S., Kalita, H., Chung, H., Roy, T., Jung, Y. and Khondaker, S. I., Cond-mat arXiv 1811.06119, 2018.Google Scholar
Pondick, J. V., Woods, J. M., Xing, J., Zhou, Y. and Cha, J. J., ACS Applied Nano Materials 1 (10), 56555661 (2018).CrossRefGoogle Scholar
Cain, J. D., Shi, F. Y., Wu, J. S. and Dravid, V. P., Acs Nano 10 (5), 54405445 (2016).CrossRefGoogle Scholar
Dumcenco, D., Ovchinnikov, D., Marinov, K., Lazic, P., Gibertini, M., Marzari, N., Lopez Sanchez, O., Kung, Y. C., Krasnozhon, D., Chen, M. W., Bertolazzi, S., Gillet, P., Fontcuberta i Morral, A., Radenovic, A. and Kis, A., Acs Nano 9 (4), 46114620 (2015).CrossRefGoogle Scholar
Yu, H., Liao, M. Z., Zhao, W. J., Liu, G. D., Zhou, X. J., Wei, Z., Xu, X. Z., Liu, K. H., Hu, Z. H., Deng, K., Zhou, S. Y., Shi, J. A., Gu, L., Shen, C., Zhang, T. T., Du, L. J., Xie, L., Zhu, J. Q., Chen, W., Yang, R., Shi, D. X. and Zhang, G. Y., Acs Nano 11 (12), 1200112007 (2017).CrossRefGoogle Scholar
Wang, S. S., Rong, Y. M., Fan, Y., Pacios, M., Bhaskaran, H., He, K. and Warner, J. H., Chem Mater 26 (22), 63716379 (2014).CrossRefGoogle Scholar
Wu, S. F., Huang, C. M., Aivazian, G., Ross, J. S., Cobden, D. H. and Xu, X. D., Acs Nano 7 (3), 27682772 (2013).CrossRefGoogle Scholar
Ghasemi, F., Frisenda, R., Dumcenco, D., Kis, A., de Lara, D. P. and Castellanos-Gomez, A., Electronics 6 (2), 28 (2017).CrossRefGoogle Scholar
Ji, Q., Kan, M., Zhang, Y., Guo, Y., Ma, D., Shi, J., Sun, Q., Chen, Q., Zhang, Y. and Liu, Z., Nano Lett 15 (1), 198205 (2015).CrossRefGoogle Scholar
Lee, C., Yan, H., Brus, L. E., Heinz, T. F., Hone, J. and Ryu, S., Acs Nano 4 (5), 26952700 (2010).CrossRefGoogle Scholar
Sanne, A., Ghosh, R., Rai, A., Yogeesh, M. N., Shin, S. H., Sharma, A., Jarvis, K., Mathew, L., Rao, R., Akinwande, D. and Banerjee, S., Nano Lett 15 (8), 50395045 (2015).CrossRefGoogle Scholar
Zhang, J., Yu, H., Chen, W., Tian, X. Z., Liu, D. H., Cheng, M., Xie, G. B., Yang, W., Yang, R., Bai, X. D., Shi, D. X. and Zhang, G. Y., Acs Nano 8 (6), 60246030 (2014).CrossRefGoogle Scholar