Hostname: page-component-848d4c4894-sjtt6 Total loading time: 0 Render date: 2024-06-22T03:56:39.206Z Has data issue: false hasContentIssue false

Compressed Crystalline Bismuth and Superconductivity ̶ An ab initio computational Simulation

Published online by Cambridge University Press:  20 January 2017

David Hinojosa-Romero
Affiliation:
Instituto de Investigaciones en Materiales, Universidad Nacional Autónoma de México, Apartado Postal 70-360, Ciudad Universitaria, México, D.F. 04510, México.
Isaías Rodríguez
Affiliation:
Facultad de Ciencias, Universidad Nacional Autónoma de México, Apartado Postal 70-542, Ciudad Universitaria, México, D.F. 04510, México
Zaahel Mata-Pinzón
Affiliation:
Instituto de Investigaciones en Materiales, Universidad Nacional Autónoma de México, Apartado Postal 70-360, Ciudad Universitaria, México, D.F. 04510, México.
Alexander Valladares
Affiliation:
Facultad de Ciencias, Universidad Nacional Autónoma de México, Apartado Postal 70-542, Ciudad Universitaria, México, D.F. 04510, México
Renela Valladares
Affiliation:
Facultad de Ciencias, Universidad Nacional Autónoma de México, Apartado Postal 70-542, Ciudad Universitaria, México, D.F. 04510, México
Ariel A. Valladares*
Affiliation:
Instituto de Investigaciones en Materiales, Universidad Nacional Autónoma de México, Apartado Postal 70-360, Ciudad Universitaria, México, D.F. 04510, México.
Get access

Abstract

Bismuth displays puzzling superconducting properties. In its crystalline equilibrium phase, it does not seem to superconduct at accessible low temperatures. However, in the amorphous phase it displays superconductivity at ∼ 6 K. Under pressure bismuth has been found to superconduct at Tcs that go from 3.9 K to 8.5 K depending on the phase obtained. So the question is: what electronic or vibrational changes occur that explains this radical transformation in the conducting behavior of this material? In a recent publication we argue that changes in the density of electronic and vibrational states may account for the behavior observed in the amorphous phase with respect to the crystal. We have now undertaken an ab initio computational study of the effects of pressure alone maintaining the original crystalline structure and compressing our supercell computationally. From the results obtained we infer that if the crystal structure remains the same (except for the contraction), no superconductivity will appear.

Type
Articles
Copyright
Copyright © Materials Research Society 2017 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Fujime, S., Jpn. J. Appl. Phys. 5, 764 (1966).Google Scholar
Kleiner, R. and Buckel, W., Superconductivity, 3rd ed. (Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim, 2016) p. 81.CrossRefGoogle Scholar
Mata-Pinzón, Z., Valladares, A. A., Valladares, R. M. and Valladares, A., PLoS ONE 11, 1, (2016).Google Scholar
Table of Contents. Phys. C Supercond. its Appl. 514, iv, (2015).Google Scholar
Rodríguez, I., Valladares, A., Valladares, R. M., Valladares, A. A. (private communication)Google Scholar
Wyckoff, R. W. G., Crystal structures, Volume 1, 2nd ed. (Interscience Publishers, New York, N. Y., 1963) pp. 783.Google Scholar
Giustino, F., Materials Modelling using Density Functional Theory, (Oxford University Press, New York, N. Y., 2014) p. 72.Google Scholar
Sholl, D. S. and Steckel, J. A., Density Functional Theory (John Wiley & Sons, Inc., Hoboken, N. J., 2009) p. 45.Google Scholar
Delley, B., J. Chem. Phys. 113, 7756 (2000).Google Scholar