Published online by Cambridge University Press: 18 January 2016
Magnetic hyperthermia is a non-invasive cancer treatment method which is usedsynergistically with the current cancer treatments. Improved biocompatibilityand enhanced heating characteristics are the pressing challenges to be addressedin magnetic hyperthermia. Through a novel combinatorial approach, we haveattempted to address both the challenges. Ferrimagneticmagnetite nanoparticles(FMNPs)of size 50 nm were synthesized by thermal decomposition method and wereconverted to hydrophilic phase by 3-Aminopropyltrimethoxysilane (APTMS). SerumAlbumin (SA) from rat was conjugated over the APTMS-FMNPs to convert tobiocompatible phase. The preliminary haemolysis experiments show that SA-FMNPsare non-haemolytic (1.2 % haemolysis). It is observed from the magnetic heatingexperiments that due to better colloidal stability, the Specific Absorption Ratevalue of the SA-FMNPs are higher (2100 W/g) than the FMNPs without SA (1400W/g). Thus we report here that SA conjugation over FMNPs (with a high saturationmagnetization of 75 emu/g) provides a novel combinatorial approach to enhanceboth the biocompatibility and the SAR value for magnetic hyperthermia.